Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 15(12): 9585-90, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682382

RESUMO

Poly-lactic acid (PLA) has been widely applied in the medical field (in biomedicines such as medical capsules, surgical sutures and suture wounds) owing to its high biodegradability, good biocompatibility and ability to be dissolved in common solvents. Chitosan (CS) is an abundant polysaccharide and a cationic polyelectrolyte present in nature. In this study, the combination of PLA and CS has been used to form PLA/CS nanocomposites having the advantages of both the original components. To enhance the dispersibility and compatibility between PLA and CS in the PLA/CS nanocomposites, polycaprolactone (PCL) is added as a compatibilizer. The Fourier Transform Infrared spectroscopies prove the existence of the interactions of PCL with PLA and CS. A more regular dispersion of CS of 200-400 nm particle size, is observed in the PLA matrix of the PLA/CS nanocomposites containing PCL, through the Field Emission Scanning Electron Microscopy images. The appearance of one glass transition temperature (T(g)) value of PLA/CS/PCL nanocomposites occuring between the T(g) values of PLA and CS in DSC diagrams confirms the improvement in the compatibility between PLA and CS, due to the presence of PCL. The TGA result shows that PCL plays an important role in enhancing the thermal stability of PLA/CS/PCL nanocomposites. The hydrolysis of PLA/CS/PCL nanocomposites in alkaline and phosphate buffer solutions was investigated. The obtained results show that the PLA/CS/PCL nanocomposites have slower hydrolysis ability than the PLA/CS composites.


Assuntos
Quitosana/química , Nanocompostos/química , Poliésteres/química , Hidrólise , Microscopia Eletrônica de Varredura
2.
J Nanosci Nanotechnol ; 15(8): 5905-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26369170

RESUMO

Here we report on the modification of fly ash (FA) with vinyltriethoxysilane (VTES) in order to enhance the dispersibility and avoid the agglomeration. FA was treated with nitric acid before the modification with VTES. The structure of fly ash particles before and after the modification was characterized by several sophisticated techniques including Fourier transform infra-red spectrum (FT-IR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FE-SEM) and size distribution analysis. The obtained results show that the VTES was grafted successfully onto the surface of FA, which significantly changes the surface properties of FA. It was also found that the thermal stability of modified FA (MFA) is much higher than that of the FA treated only with nitric acid. The size of the FA particles can also be controlled from 0.2 to 1.5 µm with increasing the loading of VTES on the surface of FA from 1 to 2 wt.%, revealing highly mono-distribution and low agglomeration. However, the agglomeration of the particles is observed when the content of VTES on the surface of FA exceeds 2 wt.%.

3.
J Nanosci Nanotechnol ; 15(4): 2777-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26353492

RESUMO

Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...