Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417365

RESUMO

By identifying Earth heritage sites, UNESCO Global Geoparks (UGGps) have promoted geo-tourism and regional economic prosperity. However, commercial and tourism development has altered the natural contexts of these geoparks, diminishing their initial value. Before implementing land use policies, spatial landscape parameters should be monitored in multiple dimensions and in real time. This study aims to develop Bilateral Segmentation Network (BiSeNet) models employing an upgraded U-structured neural network in order to monitor land use/cover changes and landscape indicators in a Vietnamese UGGp. This network has proven effective at preserving input image data and restricting the loss of spatial information in decoding data. To demonstrate the utility of deep learning, eight trained BiSeNet models were evaluated against Maximum Likelihood, Support Vector Machine, and Random Forest. The trained BSN-Nadam model (128x128), with a precision of 94% and an information loss of 0.1, can become a valuable instrument for analyzing and monitoring monthly changes in land uses/covers once tourism activities have been rapidly expanded. Three tourist routes and 41 locations in the Dak Nong UGGp were monitored for 30 years using three landscape indices: Disjunct Core Area Density (DCAD), Total Edge Contrast Index (TECI), Shannon's Diversity Index (SHDI), based on the results of the model. As a result, 18 identified geo-sites in the Daknong Geopark have been influenced significantly by agricultural and tourist activities since 2010, making these sites less uniform and unsustainable management. It promptly alerts UNESCO management to the deterioration of geological sites caused by urbanization and tourist development.


Assuntos
Aprendizado Profundo , UNESCO , Monitoramento Ambiental/métodos , Urbanização , Agricultura , Conservação dos Recursos Naturais
2.
Sci Total Environ ; 912: 169113, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065499

RESUMO

Landslides endanger lives and public infrastructure in mountainous areas. Monitoring landslide traces in real-time is difficult for scientists, sometimes costly and risky because of the harsh terrain and instability. Nowadays, modern technology may be able to identify landslide-prone locations and inform locals for hours or days when the weather worsens. This study aims to propose indicators to detect landslide traces on the fields and remote sensing images; build deep learning (DL) models to identify landslides from Sentinel-2 images automatically; and apply DL-trained models to detect this natural hazard in some particular areas of Vietnam. Nine DL models were trained based on three U-shaped architectures, including U-Net, U2-Net, and U-Net3+, and three options of input sizes. The multi-temporal Sentinel-2 images were chosen as input data for training all models. As a result, the U-Net, using an input image size of 32 × 32 and a performance of 97 % with a loss function of 0.01, can detect typical landslide traces in Vietnam. Meanwhile, the U-Net (64 × 64) can detect more considerable landslide traces. Based on multi-temporal remote sensing data, a different case study in Vietnam was chosen to see landslide traces over time based on the trained U-Net (32 × 32) model. The trained model allows mountain managers to track landslide occurrences during wet seasons. Thus, landslide incidents distant from residential areas may be discovered early to warn of flash floods.

3.
Sci Total Environ ; 880: 163271, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37019227

RESUMO

Urbanization, storms, and floods have compromised the benefits derived from various types of sand dune landscapes, particularly in developing countries located in humid monsoon tropical regions. One pertinent question is which driving forces have had a dominant impact on the contributions of sand dune ecosystems to human well-being. Has the decline in sand dune ecosystem services (ES) been primarily due to urbanization or flooding hazards? This study aims to address these issues by developing a Bayesian Belief Network (BBN) to analyze six different sand dune landscapes worldwide. The study uses various data types, including multi-temporal and -sensor remote sensing (SAR and optical data), expert knowledge, statistics, and GIS to analyze the trends in sand dune ecosystems. A support tool based on probabilistic approaches was developed to assess changes in ES over time due to the effects of urbanization and flooding. The developed BBN has the potential to assess the ES values of sand dunes during both rainy and dry seasons. The study calculated and tested the ES values in detail over six years (from 2016 to 2021) in Quang Nam province, Vietnam. The results showed that urbanization has led to an increase in the total ES values since 2016, while floods only had a minimal impact on dune ES values during the rainy season. The fluctuations of ES values were found to be more significant due to urbanization than floods. The study's approach can be useful in future research on coastal ecosystems.

4.
J Environ Manage ; 335: 117537, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36842358

RESUMO

The length of global coastline is about 356 thousand kilometers with various dynamic natural and anthropogenic. Although the number of studies on coastal landscape categorization has been increasing, it is still difficult to distinguish precisely them because the used methods commonly are traditional qualitative ones. With the leverage of remote sensing data and GIS tools, it helps categorize and identify a variety of features on land and water based on multi-source data. The aim of study is using different natural - social profile data obtained from ALOS, NOAA, and multi-temporal Landsat satellite images as input data of the convolutional-neural-network (CvNet) models for coastal landscape classification. Studies used 900 cut-line samples which represent coastal landscapes in Vietnam for training and optimizing CvNet models. As a result, nine coastal landscapes were identified including: deltas, alluvial, mature and young sand dunes, cliff, lagoon, tectonic, karst, and transitional landscapes. Three CvNet models using three different optimizer types classified the landscapes of other 1150 cut-lines in Vietnam with the accuracies about 98% and low loss function value. Excepting dalmatian, karst and delta coastal landscapes, five others distribute heterogeneous along the coasts in Vietnam. Therefore, the evaluation of additional natural components is necessary and CvNet model have ability to update new landscape types in variety of tropical nation as a step toward coastal landscape classification at both national and global scales.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Vietnã , Monitoramento Ambiental/métodos , Redes Neurais de Computação , Meio Ambiente
5.
J Environ Manage ; 320: 115732, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35930878

RESUMO

Identifying and monitoring coastlines and shorelines play an important role in coastal erosion assessment around the world. The application of deep learning models was used in this study to detect coastlines and shorelines in Vietnam using high-resolution satellite images and different object segmentation methods. The aims are to (1) propose indicators to identify coastlines and shorelines; (2) build deep learning (DL) models to automatically interpret coastlines and shorelines from high-resolution remote sensing images; and (3) apply DL-trained models to monitor coastal erosion in Vietnam. Eight DL models were trained based on four artificial-intelligent-network structures, including U-Net, U2-Net, U-Net3+, and DexiNed. The high-resolution images collected from Google Earth Pro software were used as input data for training all models. As a result, the U-Net using an input-image size of 512 × 512 provides the highest performance of 98% with a loss function of 0.16. The interpretation results of this model were used effectively for the coastline and shoreline identification in assessing coastal erosion in Vietnam due to sea-level rise in storm events over 20 years. The outcomes proved that while the shoreline is ideal for observing seasonal tidal changes or the immediate motions of current waves, the coastline is suitable to assess coastal erosion caused by the influence of sea-level rise during storms. This paper has provided a broad scope of how the U-Net model can be used to predict the coastal changes over vietnam and the world.


Assuntos
Aprendizado Profundo , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...