Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 317(1): R190-R202, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091151

RESUMO

Proinflammatory cytokines like interleukin-1ß (IL-1ß) affect the control of breathing. Our aim is to determine the effect of the anti-inflammatory cytokine IL-10 οn the control of breathing. IL-10 knockout mice (IL-10-/-, n = 10) and wild-type mice (IL-10+/+, n = 10) were exposed to the following test gases: hyperoxic hypercapnia 7% CO2-93% O2, normoxic hypercapnia 7% CO2-21% O2, hypoxic hypercapnia 7% CO2-10% O2, and hypoxic normocapnia 3% CO2-10% O2. The ventilatory function was assessed using whole body plethysmography. Recombinant mouse IL-10 (rIL-10; 10 µg/kg) was administered intraperitoneally to wild-type mice (n = 10) 30 min before the onset of gas challenge. IL-10 was administered in neonatal medullary slices (10-30 ng/ml, n = 8). We found that IL-10-/- mice exhibited consistently increased frequency and reduced tidal volume compared with IL-10+/+ mice during room air breathing and in all test gases (by 23.62 to 33.2%, P < 0.05 and -36.23 to -41.69%, P < 0.05, respectively). In all inspired gases, the minute ventilation of IL-10-/- mice was lower than IL-10+/+ (by -15.67 to -22.74%, P < 0.05). The rapid shallow breathing index was higher in IL-10-/- mice compared with IL-10+/+ mice in all inspired gases (by 50.25 to 57.5%, P < 0.05). The intraperitoneal injection of rIL-10 caused reduction of the respiratory rate and augmentation of the tidal volume in room air and also in all inspired gases (by -12.22 to -29.53 and 32.18 to 45.11%, P < 0.05, respectively). IL-10 administration in neonatal rat (n = 8) in vitro rhythmically active medullary slice preparations did not affect either rhythmicity or peak amplitude of hypoglossal nerve discharge. In conclusion, IL-10 may induce a slower and deeper pattern of breathing.


Assuntos
Dióxido de Carbono/farmacologia , Interleucina-10/metabolismo , Oxigênio/farmacologia , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-10/genética , Interleucina-10/farmacologia , Masculino , Bulbo/efeitos dos fármacos , Bulbo/fisiologia , Camundongos , Camundongos Knockout
2.
Inflammation ; 41(5): 1873-1887, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29974374

RESUMO

Inspiratory resistive breathing (IRB), a hallmark of obstructive airway diseases, is associated with strenuous contractions of the inspiratory muscles and increased negative intrathoracic pressures that act as an injurious stimulus to the lung. We have shown that IRB induces pulmonary inflammation in healthy animals. p38 kinase is activated in the lung under stress. We hypothesized that p38 is activated during IRB and contributes to IRB-induced pulmonary inflammation. Anesthetized, tracheostomized rats breathed spontaneously through a two-way valve. Resistance was connected to the inspiratory port to provoke a peak tidal inspiratory pressure 50% of maximum. Following 3 and 6 h of IRB, respiratory system mechanics were measured and bronchoalveolar lavage (BAL) was performed. Phosphorylated p38, TNF-α, and MIP-2α were detected in lung tissue. Lung injury was estimated histologically. SB203580 (p38 inhibitor) was administered prior to IRB (1 mg kg-1). Six hours of IRB increased phosphorylated p38 in the lung, compared with quietly breathing controls (p = 0.001). Six hours of IRB increased the numbers of macrophages and neutrophils (p = 0.01 and p = 0.005) in BAL fluid. BAL protein levels and lung elasticity increased after both 3 and 6 h IRB. TNF-α and MIP-2α increased after 6 h of IRB (p = 0.01 and p < 0.001, respectively). Increased lung injury score was detected at 6 h IRB. SB203580 administration blocked the increase of neutrophils and macrophages at 6 h IRB (p = 0.01 and p = 0.005 to 6 h IRB) but not the increase in BAL protein and elasticity. TNF-α, MIP-2α, and injury score at 6 h IRB returned to control. p38 activation contributes to IRB-induced pulmonary inflammation.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Inalação , Pneumonia/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Quimiocina CXCL2/análise , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Lesão Pulmonar , Macrófagos , Neutrófilos , Pneumonia/etiologia , Piridinas/farmacologia , Ratos , Fator de Necrose Tumoral alfa/análise , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...