Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 940: 173644, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823695

RESUMO

The purposeful formation of crystal defects was regarded as an attractive strategy to enhance the catalytic activity of Fe-MOFs. In this study, the pyrolytic hydrochloric acid-modulated MIL-101-NH2 (P250HMN-2) was fabricated for the first time, and the important role of pyrolysis in the formation of crystal defects was confirmed. PDS was introduced as an enhancer for the P250HMN-2/Na2SO3 system. Without pH adjustment, 99.7 % of 2,4-DCP was removed by the P250HMN-2/Na2SO3/PDS system in 180 min. The catalytic performance of P250HMN-2 improved 2.5-fold than that of MIL-101-NH2. It was found that the high density of Fe-CUSs on P250HMN-2 were the major active sites, which could efficiently react with SO32- to generate ROS through electron transfer. The results of quenching experiments, probe tests, and EPR tests indicated that SO3-, SO4-, 1O2, OH, and SO5- were involved in the 2,4-DCP degradation process, with SO3-, SO4-, and 1O2 playing major roles. Moreover, P250HMN-2 could effectively degrade 2,4-DCP for 148 h in a fixed-bed reactor with excellent stability and reusability, indicating a promising catalyst for practical applications.

2.
Ultrason Sonochem ; 104: 106829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457941

RESUMO

Catalytic conversion of lignin to value-added aromatic compounds is still an open challenge, since the selective cleavage of the linkages interconnecting the aromatic molecules, especially the ß-O-4 ones, is not efficiently achieved yet. Herein, novel titania-based nanostructured materials were synthesized using low-power-low-frequency ultrasound that demonstrated high efficiency for the selective cleavage of Cα-Cß bond of ß-O-4 linkages of lignin-inspired model compounds. Going a step ahead, experiments of sonophotocatalytic valorization of 2-phenoxy-1-phenylethanol were contacted for the first time, where the exposure to ultrasound leading to better conversion and selectivity towards the desired products in the case of the novel ultrasound-synthesized nano-photocatalyst. Mechanistic insights showcased that photogenerated holes are the main active species in the catalytic process. In general, this research work provides a green, effective, and cost-effective approach for the selective and efficient catalytic lignin valorization.

3.
Materials (Basel) ; 17(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255446

RESUMO

Effective wound treatment has become one of the most important challenges for healthcare as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies significantly evolved in order to provide a holistic approach based on various designs of functional wound dressings. Among them, hydrogels have been widely used for wound treatment due to their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides), thus enhancing the performance of resulting composite hydrogels in wound healing applications. In this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant, and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and restoration of the tissue) resulting from their use.

4.
Gels ; 9(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37754366

RESUMO

Four leather substrates from different animals were treated by dispersions containing hydrophilic composite silica-hyperbranched poly(ethylene imine) xerogels. Antimicrobial activity was introduced by incorporating silver nanoparticles and/or benzalkonium chloride. The gel precursor solutions were also infused before gelation to titanium oxide powders typically employed for induction of self-cleaning properties. The dispersions from these biomimetically premade xerogels integrate environmentally friendly materials with short coating times. Scanning electron microscopy (SEM) provided information on the powder distribution onto the leathers. Substrate and coating composition were estimated by infrared spectroscopy (IR) and energy-dispersive X-ray spectroscopy (EDS). Surface hydrophilicity and water permeability were assessed by water-contact angle experiments. The diffusion of the leather's initial components and xerogel additives into the water were measured by Ultraviolet-Visible (UV-Vis) spectroscopy. Protection against GRAM- bacteria was tested for Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae against GRAM+ bacteria for Staphylococcus aureus and Enterococcus faecalis and against fungi for Candida albicans. Antibiofilm capacity experiments were performed against Staphylococcus aureus, Klebsiella pneumoniae, Enterococcus faecalis, and Candida albicans. The application of xerogel dispersions proved an adequate and economically feasible alternative to the direct gel formation into the substrate's pores for the preparation of leathers intended for medical uses.

5.
Nanomaterials (Basel) ; 13(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513076

RESUMO

Mesoporous silicas synthesized by the co-condensation of two and three different silica monomers were synthesized by varying the time intervals between the addition of individual monomers, while the total time interval was kept constant. This resulted in different structural properties of the final silicas, particularly in their porosity and local ordering. One of the obtained samples exhibited an unusual isotherm with two hysteresis loops and its total pore volume was as high as 2.2 cm3/g. In addition, to be thoroughly characterized by a wide range of instrumental techniques, the obtained materials were also employed as the adsorbents and release platforms of a diclofenac sodium (DICL; used here as a model drug). In the case of DICL adsorption and release, differences between the samples were also revealed, which confirms the fact that time control of a monomer addition can be successfully used to fine-tune the properties of organo-silica materials.

6.
Nanomaterials (Basel) ; 13(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37299697

RESUMO

Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to the dendritic cavities, and MW of the organic matrix, was investigated to determine the optimum formulation for water purification under these conditions. This was attained with the aid of UV-visible and FTIR spectroscopy, dynamic light scattering (DLS), ζ-potential, liquid nitrogen (LN2) porosimetry, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results highlighted that both adsorbents have extraordinary sorption capacities. Xerogels are cost-effective since they approximate the performance of nanoparticles with much less organic content. Both adsorbents could be used in the form of dispersions. The xerogels, though, are more practicable materials since they may penetrate the pores of a metal or ceramic solid substrate in the form of a precursor gel-forming solution, producing composite purification devices.

7.
Nanomaterials (Basel) ; 13(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36839103

RESUMO

Textile effluents pose a massive threat to the aquatic environment, so, sustainable approaches for environmentally friendly multifunctional remediation methods degradation are still a challenge. In this study, composites consisting of bismuth oxyhalide nanoparticles, specifically bismuth oxychloride (BiOCl) nanoplatelets, and lignin-based biochar were synthesized following a one-step hydrolysis synthesis. The simultaneous photocatalytic and adsorptive remediation efficiency of the Biochar-BiOCl composites were studied for the removal of a benchmark azo anionic dye, methyl orange dye (MO). The influence of various parameters (such as catalyst dosage, initial dye concentration, and pH) on the photo-assisted removal was carried out and optimized using the Box-Behnken Design of RSM. The physicochemical properties of the nanomaterials were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, nitrogen sorption, and UV-Vis diffuse reflectance spectroscopy (DRS). The maximum dye removal was observed at a catalyst dosage of 1.39 g/L, an initial dye concentration of 41.8 mg/L, and a pH of 3.15. The experiment performed under optimized conditions resulted in 100% degradation of the MO after 60 min of light exposure. The incorporation of activated biochar had a positive impact on the photocatalytic performance of the BiOCl photocatalyst for removing the MO due to favorable changes in the surface morphology, optical absorption, and specific surface area and hence the dispersion of the photo-active nanoparticles leading to more photocatalytic active sites. This study is within the frames of the design and development of green-oriented nanomaterials of low cost for advanced (waste)water treatment applications.

8.
Pharmaceutics ; 15(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36839847

RESUMO

The capability of radially polymerized bio-dendrimers and hyperbranched polymers for medical applications is well established. Perhaps the most important implementations are those that involve interactions with the regenerative mechanisms of cells. In general, they are non-toxic or exhibit very low toxicity. Thus, they allow unhindered and, in many cases, faster cell proliferation, a property that renders them ideal materials for tissue engineering scaffolds. Their resemblance to proteins permits the synthesis of derivatives that mimic collagen and elastin or are capable of biomimetic hydroxy apatite production. Due to their distinctive architecture (core, internal branches, terminal groups), dendritic polymers may play many roles. The internal cavities may host cell differentiation genes and antimicrobial protection drugs. Suitable terminal groups may modify the surface chemistry of cells and modulate the external membrane charge promoting cell adhesion and tissue assembly. They may also induce polymer cross-linking for healing implementation in the eyes, skin, and internal organ wounds. The review highlights all the different categories of hard and soft tissues that may be remediated with their contribution. The reader will also be exposed to the incorporation of methods for establishment of biomaterials, functionalization strategies, and the synthetic paths for organizing assemblies from biocompatible building blocks and natural metabolites.

9.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768513

RESUMO

Natural hydrogels are widely used as biomedical materials in many areas, including drug delivery, tissue scaffolds, and particularly wound dressings, where they can act as an antimicrobial factor lowering the risk of microbial infections, which are serious health problems, especially with respect to wound healing. In this review article, a number of promising strategies in the development of hydrogels with biocidal properties, particularly those originating from natural polymers, are briefly summarized and concisely discussed. Common strategies to design and fabricate hydrogels with intrinsic or stimuli-triggered antibacterial activity are exemplified, and the mechanisms lying behind these properties are also discussed. Finally, practical antibacterial applications are also considered while discussing the current challenges and perspectives.


Assuntos
Anti-Infecciosos , Hidrogéis , Hidrogéis/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Cicatrização , Alicerces Teciduais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
10.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677777

RESUMO

The bioremediation of heavy metal ions and pesticides is both cost-effective and environmentally friendly. Microbial remediation is considered superior to conventional abiotic remediation processes, due to its cost-effectiveness, decrement of biological and chemical sludge, selectivity toward specific metal ions, and high removal efficiency in dilute effluents. Immobilization technology using biochar as a carrier is one important approach for advancing microbial remediation. This article provides an overview of biochar-based materials, including their design and production strategies, physicochemical properties, and applications as adsorbents and support for microorganisms. Microorganisms that can cope with the various heavy metal ions and/or pesticides that enter the environment are also outlined in this review. Pesticide and heavy metal bioremediation can be influenced by microbial activity, pollutant bioavailability, and environmental factors, such as pH and temperature. Furthermore, by elucidating the interaction mechanisms, this paper summarizes the microbe-mediated remediation of heavy metals and pesticides. In this review, we also compile and discuss those works focusing on the study of various bioremediation strategies utilizing biochar and microorganisms and how the immobilized bacteria on biochar contribute to the improvement of bioremediation strategies. There is also a summary of the sources and harmful effects of pesticides and heavy metals. Finally, based on the research described above, this study outlines the future scope of this field.


Assuntos
Metais Pesados , Praguicidas , Poluentes do Solo , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Biodegradação Ambiental , Íons , Solo/química
11.
Nanomaterials (Basel) ; 13(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678117

RESUMO

Aerogels are a class of lightweight, nanoporous, and nanostructured materials with diverse chemical compositions and a huge potential for applications in a broad spectrum of fields. This has led the IUPAC to include them in the top ten emerging technologies in chemistry for 2022. This review provides an overview of aerogel-based adsorbents that have been used for the removal and recovery of uranium from aqueous environments, as well as an insight into the physicochemical parameters affecting the adsorption efficiency and mechanism. Uranium removal is of particular interest regarding uranium analysis and recovery, to cover the present and future uranium needs for nuclear power energy production. Among the methods used, such as ion exchange, precipitation, and solvent extraction, adsorption-based technologies are very attractive due to their easy and low-cost implementation, as well as the wide spectrum of adsorbents available. Aerogel-based adsorbents present an extraordinary sorption capacity for hexavalent uranium that can be as high as 8.8 mol kg−1 (2088 g kg−1). The adsorption data generally follow the Langmuir isotherm model, and the kinetic data are in most cases better described by the pseudo-second-order kinetic model. An evaluation of the thermodynamic data reveals that the adsorption is generally an endothermic, entropy-driven process (ΔH0, ΔS0 > 0). Spectroscopic studies (e.g., FTIR and XPS) indicate that the adsorption is based on the formation of inner-sphere complexes between surface active moieties and the uranyl cation. Regeneration and uranium recovery by acidification and complexation using carbonate or chelating ligands (e.g., EDTA) have been found to be successful. The application of aerogel-based adsorbents to uranium removal from industrial processes and uranium-contaminated waste waters was also successful, assuming that these materials could be very attractive as adsorbents in water treatment and uranium recovery technologies. However, the selectivity of the studied materials towards hexavalent uranium is limited, suggesting further developments of aerogel materials that could be modified by surface derivatization with chelating agents (e.g., salophen and iminodiacetate) presenting high selectivity for uranyl moieties.

12.
Ultrason Sonochem ; 94: 106306, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36709727

RESUMO

The research for "green" and economically feasible approaches such as (photo)catalysis especially for biomass valorization such as selective oxidation of biomass derived compounds like aromatic alcohols to corresponding aldehyde by avoiding the harsh reaction conditions and the addition of reagents concentrate the focus of attention the last years. Hence, design and development of novel photocatalyst for the partial selective oxidation is highly desirable. In this research work, ultrasonication of different frequencies (22, 40, 80 kHz) and different amplitudes was utilized as synthesis tool in order to obtain novel materials by precipitation method. The synthesized samples were characterized by using different techniques such as N2 sorption, TEM, XPS, XRD, thermal analysis, and diffuse reflectance spectroscopy. The synthesized sample by using low ultrasound frequency (22 kHz) and amplitude showed a mixed morphological and structural nature consisting of asymmetric 1-dimensional (nanorods-like), layered nano-structures and not well-defined areas, leading to elevate for metal oxide specific surface areas up to 155 m2/g. The observed 1-D nanostructures have diamentions in the range of 20-60 nm. This sample revealed the highest photo-oxidation efficiency for the selective conversion of two biomass-derived, and more specifically lignin-inspired model compounds, benzyl alcohol and cinnamyl alcohol to benzaldehyde and cinnamyl aldehyde, respectively, and hence the highest yield towards the desired aldehydes. The selective photo-oxidation activity was retained even after 5 photocatalytic cycles, while no leaching of Ti was recorded.

13.
Molecules ; 27(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35956849

RESUMO

Within the frame of this article, briefly but comprehensively, we present the existing knowledge, perspectives, and challenges for the utilization of Layered Double Hydroxides (LDHs) as adsorbents against a plethora of pollutants in aquatic matrixes. The use of LDHs as adsorbents was established by considering their significant physicochemical features, including their textural, structural, morphological, and chemical composition, as well as their method of synthesis, followed by their advantages and disadvantages as remediation media. The utilization of LDHs towards the adsorptive removal of dyes, metals, oxyanions, and emerging pollutants is critically reviewed, while all the reported kinds of interactions that gather the removal are collectively presented. Finally, future perspectives on the topic are discussed. It is expected that this discussion will encourage researchers in the area to seek new ideas for the design, development, and applications of novel LDHs-based nanomaterials as selective adsorbents, and hence to further explore the potential of their utilization also for analytic approaches to detect and monitor various pollutants.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Hidróxidos/química , Poluentes Químicos da Água/química
14.
Nanomaterials (Basel) ; 12(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014605

RESUMO

Since the groundbreaking discovery of graphene by Geim and Novoselov in 2004, there has been continuous research focused on the utilization of graphene (GR) and graphene-related materials (GRms) in technologically high-impact applications, spanning from electronics, sensing, and spintronics, to catalysis, energy storage, and environmental remediation [...].

15.
Nanomaterials (Basel) ; 12(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35630900

RESUMO

The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge of organic compounds. Towards these directions and within the concept of circular (bio)economy, the development of efficient and sustainable catalytic processes is of paramount importance. Within this context, the design of novel catalysts play a key role, with carbon-based nanocatalysts (CnCs) representing one of the most promising class of materials. In this review, a wide range of CnCs utilized for biomass valorization towards valuable chemicals production, and for environmental remediation applications are summarized and discussed. Emphasis is given in particular on the catalytic production of 5-hydroxymethylfurfural (5-HMF) from cellulose or starch-rich food waste, the hydrogenolysis of lignin towards high bio-oil yields enriched predominately in alkyl and oxygenated phenolic monomers, the photocatalytic, sonocatalytic or sonophotocatalytic selective partial oxidation of 5-HMF to 2,5-diformylfuran (DFF) and the decomposition of organic pollutants in aqueous matrixes. The carbonaceous materials were utilized as stand-alone catalysts or as supports of (nano)metals are various types of activated micro/mesoporous carbons, graphene/graphite and the chemically modified counterparts like graphite oxide and reduced graphite oxide, carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and fullerenes.

16.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159790

RESUMO

Radially polymerized dendritic compounds are nowadays an established polymer category next to their linear, branched, and cross-linked counterparts. Their uncommon tree-like architecture is characterized by adjustable internal cavities and external groups. They are therefore exceptional absorbents and this attainment of high concentrations in their interior renders them ideal reaction media. In this framework, they are applied in many environmentally benign implementations. One of the most important among them is water purification through pollutant decomposition. Simple and composite catalysts and photo-catalysts containing dendritic polymers and applied in water remediation will be discussed jointly with some unconventional solutions and prospects.

17.
PLoS One ; 16(10): e0258864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710164

RESUMO

Pesticides are the leading defence against pests, but their unsafe use reciprocates the pesticide residues in highly susceptible food and is becoming a serious risk for human health. In this study, mint extract and riboflavin were tested as photosensitisers in combination with light irradiation of different frequencies, employed for various time intervals to improve the photo-degradation of deltamethrin (DM) and lambda cyhalothrin (λ-CHT) in cauliflower. Different source of light was studied, either in ultraviolet range (UV-C, 254 nm or UV-A, 320-380 nm) or sunlight simulator (> 380-800 nm). The degradation of the pesticides varied depending on the type of photosensitiser and light source. Photo-degradation of the DM and λ-CHT was enhanced by applying the mint extracts and riboflavin and a more significant degradation was achieved with UV-C than with either UV-A or sunlight, reaching a maximum decrement of the concentration by 67-76%. The light treatments did not significantly affect the in-vitro antioxidant activity of the natural antioxidants in cauliflower. A calculated dietary risk assessment revealed that obvious dietary health hazards of DM and λ-CHT pesticides when sprayed on cauliflower for pest control. The use of green chemical photosensitisers (mint extract and riboflavin) in combination with UV light irradiation represents a novel, sustainable, and safe approach to pesticide reduction in produce.


Assuntos
Nitrilas/química , Resíduos de Praguicidas/análise , Praguicidas/química , Fármacos Fotossensibilizantes , Piretrinas/química , Humanos , Controle de Pragas , Transtornos de Fotossensibilidade
18.
Environ Pollut ; 288: 117676, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265555

RESUMO

Recently, the adsorption-based environmental remediation techniques have gained a considerable attention, due to their economic viability and simplicity over other methods. Hence, detailed presentation and analysis were herein focused on describing the role of biochar in oil spill removal. Oil removal by utilizing biochar is assumed as a green-oriented concept. Biochar is a carbon-rich low-cost material with high porosity and specific surface chemistry, with a tremendous potentiality for oil removal from aqueous solutions. Oil sorption properties of biochar mainly depend on the biochar production/synthesis method, and the biomass feedstock type. In order to preserve the stability of functional groups in the structure, biochar needs to be produced/activated at low temperatures (<700 ᵒC). In general, biochar derived from biomass containing high lignin content via slow pyrolysis is more favorable for oil removal. Exceptional characteristics of biochar which intensify the oil removal capability such as hydrophobicity, oleophilicity or/and specific contaminant-surface interaction of biochar can be enhanced and be tuned by chemical and physical activation methods. Considering all the presented results, future perspectives such as the examination of biochar efficacy on oil removal efficiency in multi-element contaminated aqueous solutions to identify the best biomass feedstocks, the production protocols and large-scale field trials, are also discussed.


Assuntos
Poluição por Petróleo , Adsorção , Carvão Vegetal , Pirólise
19.
J Hazard Mater ; 413: 125279, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33607585

RESUMO

The removal of uranium species from aqueous phases using non-hazardous chemicals is still an open challenge, and remediation by adsorption is a prosperous strategy. Among the most crucial concerns regarding the design of an efficient material as adsorbent are, except the cost and the green character, the feasibility to be stable and effective under acidic pH, and to selectively adsorb the desired metal ion (e.g. uranium). Herein, we present a phosphonate functionalized ordered mesoporous silica (OMS-P), prepared by a one-step co-condensation synthesis. The physicochemical features of the material were determined by HR-TEM, XPS, EDX, N2 sorption, and solid NMR, while the surface zeta potential was also measured. The removal efficiency was evaluated at two different temperatures (20 and 50 °C) in acidic environment to avoid interferences like solid phase formation or carbonate complexation and the adsorption isotherms, including data fitting with Langmuir and Freundlich models and thermodynamic parameters are presented and discussed. The high and homogeneous dispersion of the phosphonate groups within the entire silica's structure led to the greatest reported up-todays capacity (345 mg/g) at pH = 4, which was achieved in less than 10 min. Additionally, OMS-P showed that the co-presence of other polyvalent cation like Eu(III) did not affect the efficiency of adsorption, which occurs via inner-sphere complex formation. The comparison to the non-functionalized silica (OMS) revealed that the key feature towards an efficient, stable, and selective removal of the U(VI) species is the specific surface chemistry rather than the textural and structural features. Based on all the results and spectroscopic validations of surface adsorbed U(VI), the main interactions responsible for the elevated uranium removal were proposed.

20.
Antibiotics (Basel) ; 10(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440860

RESUMO

The aim of the present study is the synthesis of activated carbon (AC) from different agricultural wastes such as tea and plane tree leaves in order to use them for the removal of pramipexole dihydrochloride (PRM) from aqueous solutions. Two different carbonization and synthetic activation protocols were followed, with the herein-proposed ultrasound-assisted two-step protocol leading to better-performing carbon, especially for the tea-leaf-derived material (TEA(char)-AC). Physicochemical characterizations were performed by Fourier-transform infrared spectroscopy (FTIR), N2 physisorption, and scanning electron microscopy (SEM). TEA(char)-AC presented the highest surface area (1151 m2/g) and volume of micro and small mesopores. Maximum capacity was found at 112 mg/g for TEA(char)-AC at an optimum pH equal to 3, with the Langmuir isotherm model presenting a better fitting. The removal efficiency of TEA(char)-AC is higher than other biomass-derived carbons and closer to benchmark commercial carbons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...