Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Res Eur ; 4: 17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764756

RESUMO

The changes in the energy sector after the Paris agreement and the establishment of the Green Deal, pressed the governments to embrace new measures to reduce greenhouse gas emissions. Among them, is the replacement of fossil fuels by renewable energy sources or carbon-neutral alternative means, such as green hydrogen. As the European Commission approved green hydrogen as a clean fuel, the interest in investments and dedicated action plans related to its production and storage has significantly increased. Hydrogen storage is feasible in aboveground infrastructures as well as in underground constructions. Proper geological environments for underground hydrogen storage are porous media and rock cavities. Porous media are classified into depleted hydrocarbon reservoirs and aquifers, while rock cavities are subdivided into hard rock caverns, salt caverns, and abandoned mines. Depending on the storage option, various technological requirements are mandatory, influencing the required capital cost. Although the selection of the optimum storage technology is site depending, the techno-economical appraisal of the available underground storage options featured the porous media as the most economically attractive option. Depleted hydrocarbon reservoirs were of high interest as site characterisation and cavern mining are omitted due to pre-existing infrastructure, followed by aquifers, where hydrogen storage requires a much simpler construction. Research on data analytics and machine learning tools will open avenues for consolidated knowledge of geological storage technologies.

2.
Pharmaceutics ; 15(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896231

RESUMO

The aim of this study is the synthesis of novel peptide-silver nanoparticle conjugates with enhanced wound healing capacity. Peptide-silver nanoparticle conjugates were synthesized using myristoyl tetrapeptide 6 (MT6) or copper tripeptide 1 (CuTP1). Peptide-free silver nanoparticles (AgNP) were synthesized using NaBH4 and sodium citrate and were used as control. The addition of the peptides during or after the synthesis of nanoparticles and its impact on the properties of the synthesized peptide-silver nanoparticle conjugates were assessed. The monitoring of the synthesis of nanoparticles was achieved using ultraviolet-visible spectrophotometry (UV-/Vis). The characteristics and colloidal stability of the nanoparticles (size and ζ-potential distribution, morphology, composition and structure) were monitored using dynamic laser scattering (DLS), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD). The wound healing capacity of the peptide-silver nanoparticle conjugates was assessed using scratch test assay on fibroblasts (NIH/3T3). The results indicated that the addition of the peptides during the synthesis of nanoparticles lead to better yield of the reaction and more effective capping while the size distribution and ζ-potential of the conjugates indicated long-term colloidal stability. The MT6-AgNP conjugate exhibited 71.97 ± 4.35% wound closure, which was about 5.48-fold higher (p < 0.05) than the corresponding free MT6. The CuTP1-AgNP conjugate exhibited 62.37 ± 18.33% wound closure that was better by 2.82 fold (p < 0.05) compared to the corresponding free CuTP1. Both peptides led to the synthesis of silver nanoparticle conjugates with enhanced wound healing capacity compared to the respective free peptide or to the peptide-free AgNP (29.53 ± 4.71% wound closure, p < 0.05). Our findings demonstrated that the synthetized peptide-silver nanoparticle conjugates are promising ingredients for wound care formulation.

3.
Water Environ Res ; 93(10): 1979-1994, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33835675

RESUMO

Raw palygorskite (Pal) samples went under acid (H-Pal), NaCl (Na-Pal), and CaCl2 treatment (Ca-Pal) in order to be examined as ammonium (NH4 + ) sorbents from aqueous solutions. The samples were characterized by XRD and FT-IR techniques to examine potential structural differences after modifications, and batch kinetic experiment series were applied to determine the optimal conditions for NH4 + removal. According to thermodynamic analysis, the removal reaction for sodium- and calcium-treated samples was endothermic (ΔΗ0  > 0, 1.65 kJ/mol and 24.66 kJ/mol, respectively), in contrast with the exothermic reactions of raw and acidic-treated palygorskite samples (ΔΗ0  < 0, -37.18 kJ/mol and -27.56 kJ/mol respectively). Moreover, each sample presented a different order of sorbed ions preference, whereas the strong affinity for Ca2+ sorption was common in all cases since the NH4 + removal inhibited. Nevertheless, a similar pattern was followed for raw and modified samples at isotherm study, rendering the linear form of Freundlich isotherm to express better the NH4 + sorption on palygorskite sample, indicating that it is a heterogeneous procedure. In all cases, the NH4 + maximum uptake was within 15 min using 8 g/L of each sorbent, especially for the Na-Pal sample, which could reach almost 100% removal of low concentration NH4 + . PRACTITIONER POINTS: Modified palygorskite samples were tested for NH4 + removal from aqueous solutions. NaCl-treated palygorskite had the higher removal efficiency, which could reach almost 100% removal of low concentration NH4 + . NH4 + maximum uptake was within 15 minutes using 8 g/L of each sorbent. NH4 + adsorption was an endothermic reaction for NaCl- and CaCl2 -treated palygorskite sorbents. NH4 + adsorption was an exothermic reaction for raw and acid-treated palygorskite sorbents.


Assuntos
Compostos de Amônio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Compostos de Magnésio , Compostos de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
4.
Eur J Pharm Biopharm ; 154: 359-376, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32745710

RESUMO

The clay minerals are characterized as important minerals due to their specific properties. One of the most important groups of the clay minerals is the kaolinite's group minerals due to their morphology, availability and range of potential applications. Halloysite and kaolinite are investigated here for their pharmaceutical applications and especially for their potential in cancer treatment. This review study is focusing on the potential applications of the kaolinite's group minerals in cancer diagnosis and monitoring, cancer treatment, the avoidance of metastasis, and the relief of cancer pains. Anticancer drug-loaded formulations based on these minerals show high potential for the treatment of various types of cancer as they have been shown to exhibit high anticancer activity in cancer cell lines and cancer animal models, high biocompatibility, low side effects, and high drug bioavailability.


Assuntos
Antineoplásicos/administração & dosagem , Argila , Caulim/administração & dosagem , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Argila/química , Citotoxinas/administração & dosagem , Citotoxinas/química , Citotoxinas/metabolismo , Humanos , Caulim/química , Caulim/metabolismo , Minerais/administração & dosagem , Minerais/química , Minerais/metabolismo , Neoplasias/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...