Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 119(1): 35-56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244055

RESUMO

The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.


Assuntos
Aterosclerose , Placa Aterosclerótica , Feminino , Humanos , Placa Aterosclerótica/patologia , Ativação de Macrófagos/genética , Aterosclerose/patologia , Macrófagos , Monócitos
2.
Metabolism ; 140: 155381, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566801

RESUMO

AIMS: Cholesterol efflux capacity (CEC) as a measure of high-density lipoprotein functionality is independently and inversely associated with increased risk of cardiovascular events and mortality, and advanced plaque morphology. Adipokines, adipose tissue-derived factors, can influence systemic lipoprotein metabolism, and participate in the regulation of vascular function and inflammation. We aimed to investigate the association between CEC and circulating adipokine levels (anti-inflammatory adiponectin, and pro-inflammatory chemerin and resistin) in subjects with severe carotid atherosclerotic disease and evaluate its impact on post-surgical outcomes. METHODS AND RESULTS: This is a cross-sectional study with a 5-year follow-up component. Consecutive patients with severe carotid atherosclerosis scheduled for a carotid endarterectomy were recruited from hospital-based centres in Montreal, Canada (n = 285). Fasting blood samples were collected pre-operatively and used to measure plasma total and high-molecular weight (HMW) adiponectin, chemerin, and resistin, and to perform cholesterol efflux assays in J774 macrophage-like cells. Five-year post-surgery outcomes were obtained through medical chart review. Subjects had a mean age of 70.1 ± 9.4, were 67.0 % male, had various comorbidities (hypercholesterolemia [85.3 %], hypertension [83.5 %], type 2 diabetes [34.5 %], coronary artery disease [38.6 %]), and previously experienced cerebrovascular symptomatology (77.9 %). CEC was independently and positively associated with total and HMW adiponectin levels (ß [95 % confidence interval]; 0.216 [0.134-0.298] and 0.107 [0.037-0.176], respectively) but not with chemerin or resistin. Total adiponectin had the greatest association accounting for 8.3 % of the variance in CEC. Interaction regression models demonstrated a significant interaction between adiponectin and chemerin in increasing CEC. Notably, with each unit increase in CEC there was a 93.9 % decrease in the odds of having an ischemic cerebrovascular event 5 years post-surgery (0.061 [0.007-0.561]). CONCLUSIONS: Our findings demonstrated circulating adiponectin to have a strong association with increased CEC in subjects with severe carotid atherosclerosis and high CEC to be associated with more favourable post-surgical outcomes. These findings reflect the importance of adipose tissue health in influencing CEC levels and atherosclerotic cardiovascular disease risk.


Assuntos
Doenças das Artérias Carótidas , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Adipocinas , Resistina , Adiponectina , Diabetes Mellitus Tipo 2/complicações , Estudos Transversais , Doenças das Artérias Carótidas/etiologia , Colesterol/metabolismo , Biomarcadores
3.
Curr Opin Lipidol ; 33(2): 139-145, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34581311

RESUMO

PURPOSE OF REVIEW: The primary cardioprotective function of high-density lipoprotein (HDL) is to remove excess cellular free cholesterol (FC) from peripheral tissues and deliver it to the liver. Here, we summarize recent research that examines apolipoprotein A-I (apoA-I) lipidation models by adenosine triphosphate binding cassette transporter A1 (ABCA1) and discuss its relevance in atherosclerotic cardiovascular disease (ASCVD). RECENT FINDINGS: The first step in HDL formation involves the interaction between apoA-I and ABCA1, where ABCA1 mediates the removal of FC and phospholipids from lipid-laden macrophages to form discoidal nascent HDL (nHDL). However, there are currently no clear-cut systematic models that characterize HDL formation. A number of recent studies have investigated the importance of apoA-I C- and N-terminal domains required for optimal cholesterol efflux and nHDL production. Furthermore, functional ABCA1 is required for direct or indirect binding to apoA-I where ABCA1 dimer-monomer interconversion facilitates apoA-I lipidation from plasma membrane microdomains. Microparticles are also another lipid source for apoA-I solubilization into nHDL. SUMMARY: ApoA-I and ABCA1 are key factors in macrophage-mediated cholesterol efflux and nHDL production. Understanding of the key steps in HDL formation may unlock the therapeutic potential of HDL and improve clinical management of ASCVD.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Apolipoproteína A-I , Aterosclerose , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , Humanos , Lipoproteínas HDL/metabolismo
4.
Cell Signal ; 91: 110222, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954016

RESUMO

Adiponectin exerts its atheroprotection by stimulating adenosine triphosphate binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux to apolipoprotein A-I (apoA-I). However, involvement of the apoA-I residues in this process have not been studied. In Tamm-Horsfall 1 (THP-1) macrophages and baby hamster kidney (BHK) cells we assessed adiponectin's potential to restore cholesterol efflux in the presence of apoA-I and ABCA1 mutants, respectively. Adiponectin was unable to restore efflux from THP-1 macrophages in the presence of apoA-I carboxy-terminal domain (CTD) successive mutants from residues 187-243 versus apoA-I mutants alone. Furthermore, adiponectin did not significantly influence cholesterol efflux to apoA-I from BHK-ABCA1 mutant cells. Adiponectin appears to require functional apoA-I CTD residues 187-243 and wild-type ABCA1 to mediate efficient cholesterol efflux from THP-1 macrophages and BHK cells, respectively. Therefore, adiponectin cannot rescue defective cholesterol efflux in apoA-I- or ABCA1-mutant conditions, but rather increases cholesterol efflux in wild-type apoA-I conditions compared to apoA-I exposure alone.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Adiponectina/metabolismo , Apolipoproteína A-I , Transportador 1 de Cassete de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/farmacologia , Linhagem Celular , Colesterol/metabolismo , Cricetinae , Humanos , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...