Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 11(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801697

RESUMO

This report was designed to compare spaceflight-induced cellular and physiological adaptations of Candida albicans cultured in microgravity on the International Space Station across several payloads. C. albicans is a common opportunistic fungal pathogen responsible for a variety of superficial infections as well as systemic and more severe infections in humans. Cumulatively, the propensity of this organism to be widespread through the population, the ability to produce disease in immunocompromised individuals, and the tendency to respond to environmental stress with characteristics associated with increased virulence, require a better understanding of the yeast response to microgravity for spaceflight crew safety. As such, the responses of this yeast cultivated during several missions using two in-flight culture bioreactors were analyzed and compared herein. In general, C. albicans had a slightly shorter generation time and higher growth propensity in microgravity as compared to terrestrial controls. Rates of cell filamentation differed between bioreactors, but were low and not significantly different between flight and terrestrial controls. Viable cells were retrieved and cultured, resulting in a colony morphology that was similar between cells cultivated in flight and in terrestrial control conditions, and in contrast to that previously observed in a ground-based microgravity analog system. Of importance, yeast demonstrated an increased resistance when challenged during spaceflight with the antifungal agent, amphotericin B. Similar levels of resistance were not observed when challenged with the functionally disparate antifungal drug caspofungin. In aggregate, yeast cells cultivated in microgravity demonstrated a subset of characteristics associated with virulence. In addition, and beyond the value of the specific responses of C. albicans to microgravity, this report includes an analysis of biological reproducibility across flight opportunities, compares two spaceflight hardware systems, and includes a summary of general flight and payload timelines.

2.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198176

RESUMO

Microbial mat communities are associated with extensive (∼700 km2) and morphologically variable carbonate structures, termed microbialites, in the hypersaline Great Salt Lake (GSL), Utah. However, whether the composition of GSL mat communities covaries with microbialite morphology and lake environment is unknown. Moreover, the potential adaptations that allow the establishment of these extensive mat communities at high salinity (14% to 17% total salts) are poorly understood. To address these questions, microbial mats were sampled from seven locations in the south arm of GSL representing different lake environments and microbialite morphologies. Despite the morphological differences, microbialite-associated mats were taxonomically similar and were dominated by the cyanobacterium Euhalothece and several heterotrophic bacteria. Metagenomic sequencing of a representative mat revealed Euhalothece and subdominant Thiohalocapsa populations that harbor the Calvin cycle and nitrogenase, suggesting they supply fixed carbon and nitrogen to heterotrophic bacteria. Fifteen of the next sixteen most abundant taxa are inferred to be aerobic heterotrophs and, surprisingly, harbor reaction center, rhodopsin, and/or bacteriochlorophyll biosynthesis proteins, suggesting aerobic photoheterotrophic (APH) capabilities. Importantly, proteins involved in APH are enriched in the GSL community relative to that in microbialite mat communities from lower salinity environments. These findings indicate that the ability to integrate light into energy metabolism is a key adaptation allowing for robust mat development in the hypersaline GSL.IMPORTANCE The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ∼700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites across the lake. Metagenomic sequencing reveals an abundance and diversity of autotrophic and heterotrophic taxa capable of harvesting light energy to drive metabolism. The unexpected abundance of and diversity in the mechanisms of harvesting light energy observed in GSL mat populations likely function to minimize niche overlap among coinhabiting taxa, provide a mechanism(s) to increase energy yield and osmotic balance during salt stress, and enhance fitness. Together, these physiological benefits promote the formation of robust mats that, in turn, influence the formation of morphologically diverse microbialite structures that can be imprinted in the rock record.


Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Lagos/microbiologia , Microbiota , Cianobactérias/classificação , Cianobactérias/fisiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Salinidade , Utah
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...