Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36292081

RESUMO

Stroke is an acute neurological dysfunction attributed to a focal injury of the central nervous system due to reduced blood flow to the brain. Nowadays, stroke is a global threat associated with premature death and huge economic consequences. Hence, there is an urgency to model the effect of several risk factors on stroke occurrence, and artificial intelligence (AI) seems to be the appropriate tool. In the present study, we aimed to (i) develop reliable machine learning (ML) prediction models for stroke disease; (ii) cope with a typical severe class imbalance problem, which is posed due to the stroke patients' class being significantly smaller than the healthy class; and (iii) interpret the model output for understanding the decision-making mechanism. The effectiveness of the proposed ML approach was investigated in a comparative analysis with six well-known classifiers with respect to metrics that are related to both generalization capability and prediction accuracy. The best overall false-negative rate was achieved by the Multi-Layer Perceptron (MLP) classifier (18.60%). Shapley Additive Explanations (SHAP) were employed to investigate the impact of the risk factors on the prediction output. The proposed AI method could lead to the creation of advanced and effective risk stratification strategies for each stroke patient, which would allow for timely diagnosis and the right treatments.

2.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807832

RESUMO

This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enabling extensions far beyond dedicated motion capture laboratories. We present the technical details for calculating the kinematics, generalized forces, muscle forces, joint reaction loads, and predicting ground reaction wrenches during walking. Emphasis was given to reduce computational latency while maintaining accuracy as compared to the offline counterpart. Notably, we highlight the influence of adequate filtering and differentiation under noisy conditions and its importance for consequent dynamic calculations. Real-time estimates of the joint moments, muscle forces, and reaction loads closely resemble OpenSim's offline analyses. Model-based estimation of ground reaction wrenches demonstrates that even a small error can negatively affect other estimated quantities. An application of the developed system is demonstrated in the context of rehabilitation and gait retraining. We expect that such a system will find numerous applications in laboratory settings and outdoor conditions with the advent of predicting or sensing environment interactions. Therefore, we hope that this open-source framework will be a significant milestone for solving this grand challenge.


Assuntos
Marcha , Caminhada , Fenômenos Biomecânicos , Músculos
3.
Sensors (Basel) ; 20(23)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291594

RESUMO

Conventional biomechanical modelling approaches involve the solution of large systems of equations that encode the complex mathematical representation of human motion and skeletal structure. To improve stability and computational speed, being a common bottleneck in current approaches, we apply machine learning to train surrogate models and to predict in near real-time, previously calculated medial and lateral knee contact forces (KCFs) of 54 young and elderly participants during treadmill walking in a speed range of 3 to 7 km/h. Predictions are obtained by fusing optical motion capture and musculoskeletal modeling-derived kinematic and force variables, into regression models using artificial neural networks (ANNs) and support vector regression (SVR). Training schemes included either data from all subjects (LeaveTrialsOut) or only from a portion of them (LeaveSubjectsOut), in combination with inclusion of ground reaction forces (GRFs) in the dataset or not. Results identify ANNs as the best-performing predictor of KCFs, both in terms of Pearson R (0.89-0.98 for LeaveTrialsOut and 0.45-0.85 for LeaveSubjectsOut) and percentage normalized root mean square error (0.67-2.35 for LeaveTrialsOut and 1.6-5.39 for LeaveSubjectsOut). When GRFs were omitted from the dataset, no substantial decrease in prediction power of both models was observed. Our findings showcase the strength of ANNs to predict simultaneously multi-component KCF during walking at different speeds-even in the absence of GRFs-particularly applicable in real-time applications that make use of knee loading conditions to guide and treat patients.

4.
PLoS One ; 13(4): e0195463, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29617448

RESUMO

The current study aimed to assess the potential of different exercises triggering an osteogenic response at the femoral neck in a group of postmenopausal women. The osteogenic potential was determined by ranking the peak hip contact forces (HCFs) and consequent peak tensile and compressive strains at the superior and inferior part of the femoral neck during activities such as (fast) walking, running and resistance training exercises. Results indicate that fast walking (5-6 km/h) running and hopping induced significantly higher strains at the femoral neck than walking at 4 km/h which is considered a baseline exercise for bone preservation. Exercises with a high fracture risk such as hopping, need to be considered carefully especially in a frail elderly population and may therefore not be suitable as a training exercise. Since superior femoral neck frailness is related to elevated hip fracture risk, exercises such as fast walking (above 5 km/h) and running can be highly recommended to stimulate this particular area. Our results suggest that a training program including fast walking (above 5 km/h) and running exercises may increase or preserve the bone mineral density (BMD) at the femoral neck.


Assuntos
Terapia por Exercício/métodos , Colo do Fêmur/fisiologia , Osteogênese/fisiologia , Osteoporose Pós-Menopausa/prevenção & controle , Osteoporose Pós-Menopausa/fisiopatologia , Pós-Menopausa , Peso Corporal/fisiologia , Densidade Óssea/fisiologia , Feminino , Análise de Elementos Finitos , Quadril/fisiologia , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Pós-Menopausa/fisiologia , Corrida/fisiologia , Estresse Mecânico , Caminhada/fisiologia
5.
Gait Posture ; 53: 155-161, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28161687

RESUMO

Walking and running have been found to increase hip bone mass in postmenopausal women. However, the optimal speed to trigger osteogenesis is still under debate because the exact loading during different speeds is poorly characterized. Moreover, age related differences in gait kinematics/kinetics can potentially result in differences in peak hip loading, making extrapolation of results based on young populations to the elderly misleading. Using integrated 3D motion capture and musculoskeletal modeling, peak hip contact forces (HCFs) were calculated during walking and running from 3 to 9km/h in 14 female young (21.4±1.6years old) and elderly (69.8±3.4years old) participants. Peak HCFs were similar during walking in both groups, whereas elderly loaded their hip less than young during running, through reducing their stride length and hip adduction angle at peak loading. Moreover, hip adduction moment was found to best predict peak HCF during impact in walking and running whereas hip extension and external rotation moment can predict the second peak HCF during walking in the elderly and young group respectively. Comparison between same speeds in walking and running revealed that in contrast to young no additional hip loading is imposed during running in elderly. The present study offers an insight into the differences in hip loading profile in postmenopausal women during walking and running at different speeds. Such information is crucial to medical experts that target site-specific bone loading through exercise in elderly populations in order to prevent hip bone loss.


Assuntos
Envelhecimento/fisiologia , Marcha , Articulação do Quadril/fisiologia , Corrida , Caminhada , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Osteoartrite do Quadril/fisiopatologia , Osteoporose Pós-Menopausa/fisiopatologia , Adulto Jovem
6.
J Bone Miner Res ; 30(8): 1431-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25704538

RESUMO

Exercise plays a pivotal role in maximizing peak bone mass in adulthood and maintaining it through aging, by imposing mechanical loading on the bone that can trigger bone mineralization and growth. The optimal type and intensity of exercise that best enhances bone strength remains, however, poorly characterized, partly because the exact peak loading of the bone produced by the diverse types of exercises is not known. By means of integrated motion capture as an input to dynamic simulations, contact forces acting on the hip of 20 young healthy adults were calculated during walking and running at different speeds. During walking, hip contact forces (HCFs) have a two-peak profile whereby the first peak increases from 4.22 body weight (BW) to 5.41 BW and the second from 4.37 BW to 5.74 BW, by increasing speed from 3 to 6 km/h. During running, there is only one peak HCF that increases from 7.49 BW to 10.01 BW, by increasing speed from 6 to 12 km/h. Speed related profiles of peak HCFs and ground reaction forces (GRFs) reveal a different progression of the two peaks during walking. Speed has a stronger impact on peak HCFs rather than on peak GRFs during walking and running, suggesting an increasing influence of muscle activity on peak HCF with increased speed. Moreover, results show that the first peak of HCF during walking can be predicted best by hip adduction moment, and the second peak of HCF by hip extension moment. During running, peak HCF can be best predicted by hip adduction moment. The present study contributes hereby to a better understanding of musculoskeletal loading during walking and running in a wide range of speeds, offering valuable information to clinicians and scientists exploring bone loading as a possible nonpharmacological osteogenic stimulus. © 2015 American Society for Bone and Mineral Research.


Assuntos
Quadril/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Caminhada/fisiologia , Adulto , Feminino , Humanos , Masculino , Suporte de Carga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...