Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(10): 110484, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263595

RESUMO

The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.


Assuntos
Astrócitos , Conexina 43 , Animais , Astrócitos/metabolismo , Conexina 30/metabolismo , Conexina 43/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , Aprendizagem Espacial
2.
Physiol Rev ; 101(1): 93-145, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32326824

RESUMO

Over the past several decades a large amount of data have established that glial cells, the main cell population in the brain, dynamically interact with neurons and thus impact their activity and survival. One typical feature of glia is their marked expression of several connexins, the membrane proteins forming intercellular gap junction channels and hemichannels. Pannexins, which have a tetraspan membrane topology as connexins, are also detected in glial cells. Here, we review the evidence that connexin and pannexin channels are actively involved in dynamic and metabolic neuroglial interactions in physiological as well as in pathological situations. These features of neuroglial interactions open the way to identify novel non-neuronal aspects that allow for a better understanding of behavior and information processing performed by neurons. This will also complement the "neurocentric" view by facilitating the development of glia-targeted therapeutic strategies in brain disease.


Assuntos
Encefalopatias/fisiopatologia , Encéfalo/fisiologia , Conexinas/fisiologia , Neuroglia/fisiologia , Animais , Encefalopatias/tratamento farmacológico , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/fisiologia , Humanos
3.
Int J Mol Sci ; 21(11)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492823

RESUMO

Recent studies indicate that connexin hemichannels do not act as freely permeable non-selective pores, but they select permeants in an isoform-specific manner with cooperative, competitive and saturable kinetics. The aim of this study was to investigate whether the treatment with a mixture of IL-1ß plus TNF-α, a well-known pro-inflammatory condition that activates astroglial connexin 43 (Cx43) hemichannels, could alter their permeability to molecules. We found that IL-1ß plus TNF-α left-shifted the dye uptake rate vs. dye concentration relationship for Etd and 2-NBDG, but the opposite took place for DAPI or YO-PRO-1, whereas no alterations were observed for Prd. The latter modifications were accompanied of changes in Kd (Etd, DAPI, YO-PRO-1 or 2-NBDG) and Hill coefficients (Etd and YO-PRO-1), but not in alterations of Vmax. We speculate that IL-1ß plus TNF-α may distinctively affect the binding sites to permeants in astroglial Cx43 hemichannels rather than their number in the cell surface. Alternatively, IL-1ß plus TNF-α could induce the production of endogenous permeants that may favor or compete for in the pore-lining residues of Cx43 hemichannels. Future studies shall elucidate whether the differential ionic/molecule permeation of Cx43 hemichannels in astrocytes could impact their communication with neurons in the normal and inflamed nervous system.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Citocinas/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacocinética , Animais , Sítios de Ligação , Transporte Biológico , Membrana Celular/metabolismo , Desoxiglucose/análogos & derivados , Desoxiglucose/farmacocinética , Corantes Fluorescentes/farmacocinética , Junções Comunicantes , Inflamação , Interleucina-1beta/farmacologia , Íons , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Permeabilidade , Fator de Necrose Tumoral alfa/farmacologia
4.
Glia ; 68(6): 1201-1212, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868275

RESUMO

As the most abundant gap junction protein in the central nervous system (CNS), astrocytic connexin 43 (Cx43) maintains astrocyte network homeostasis, affects oligodendroglial development and participates in CNS pathologies as well as injury progression. However, its role in remyelination is not yet fully understood. To address this issue, we used astrocyte-specific Cx43 conditional knockout (Cx43 cKO) mice generated through the use of a hGFAP-cre promoter, in combination with mice carrying a floxed Cx43 allele that were subjected to lysolecithin so as to induce demyelination. We found no significant difference in the demyelination of the corpus callosum between Cx43 cKO mice and their non-cre littermate controls, while the remyelination process in Cx43 cKO mice was accelerated. Moreover, an increased number of mature oligodendrocytes and an unaltered number of oligodendroglial lineage cells were found in Cx43 cKO mouse lesions. This indicates that oligodendrocyte precursor cell (OPC) differentiation was facilitated by astroglial Cx43 depletion as remyelination progressed. Underlying the latter, there was a down-regulated glial activation and modulated local inflammation as well as a reduction of myelin debris in Cx43 cKO mice. Importantly, 2 weeks of orally administrating boldine, a natural alkaloid that blocks Cx hemichannel activity in astrocytes without affecting gap junctional communication, obviously modulated local inflammation and promoted remyelination. Together, the data suggest that the astrocytic Cx43 hemichannel is negatively involved in the remyelination process by favoring local inflammation. Consequently, inhibiting Cx43 hemichannel functionality may be a potential therapeutic approach for demyelinating diseases in the CNS.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Inflamação/metabolismo , Remielinização/fisiologia , Animais , Diferenciação Celular/fisiologia , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/patologia , Junções Comunicantes/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo
5.
Assay Drug Dev Technol ; 17(5): 240-248, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31314551

RESUMO

Gap junctions (GJs) are dynamic structures composed of hexamers of connexins (Cxs), a class of transmembrane proteins enabling channel-mediated direct intercellular communication through cell-cell diffusion of ions and small metabolites. In defined conditions, Cxs also work as hemichannels allowing exchanges between the cytoplasm and the extracellular medium. The most common GJ channel is formed by connexin 43 (Cx43) and plays an important role in physiological and pathological processes in excitable tissues, such as heart and brain. Hence, Cx43 has been largely envisioned as a new therapeutic target in cancer, neurological and psychiatric indications, or cardiovascular diseases. Identifying new pharmacological inhibitors of Cx43 GJs with different mechanisms of action and from diverse chemical classes is thus highly challenging. We present here a high-content screening method, based on the evaluation of fluorescent dye transfer rates between adjacent cells to monitor the function of GJs in U251 glioblastoma cells expressing high levels of Cx43. This assay was validated using well-described pharmacological GJ inhibitors such as mefloquine. The method was adapted to screen a library of 1,280 Food and Drug Administration- and European Medicines Agency-approved drugs that led to the selection of both known and new inhibitors of GJ channel function. We further focused on a specific class of microtubule-targeting agents, confirming that a proper tubulin network is required for functional Cx43 GJ channels.


Assuntos
Conexina 43/antagonistas & inibidores , Junções Comunicantes/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Mefloquina/farmacologia , Linhagem Celular Tumoral , Conexina 43/metabolismo , Relação Dose-Resposta a Droga , Junções Comunicantes/metabolismo , Humanos
6.
Glia ; 67(10): 1852-1858, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31216083

RESUMO

Astrocytes are organized as communicating cellular networks where each cell is connected to others via gap junctions. These connections are not pervasive and there is evidence for the existence of subgroups composed by preferentially connected cells. Despite being unclear how these are established, we hypothesized lineage might contribute to the establishment of these subgroups. To characterize the functional coupling of clonally related astrocytes, we performed intracellular dye injections in clones of astrocytes labeled with the StarTrack method. This methodology revealed sibling astrocytes are preferentially connected when compared to other surrounding astrocytes. These results suggest the role of the developmental origin in the organization of astrocytes as intercellular networks.


Assuntos
Astrócitos/fisiologia , Linhagem da Célula , Junções Comunicantes/fisiologia , Animais , Astrócitos/citologia , Linhagem da Célula/fisiologia , Camundongos Endogâmicos C57BL , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Técnicas de Cultura de Tecidos
7.
Neurosci Lett ; 695: 100-105, 2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28893592

RESUMO

By 2040 neurodegenerative diseases will become the world's second leading cause of death after cardiovascular disease (WHO). Major efforts are required to elucidate the underlying molecular and cellular mechanisms of neurodegenerative diseases. Connexin and pannexin membrane channel proteins are conduits through which neuronal, glial, and vascular tissues interact. In the normal brain, this interaction underlies homeostasis, metabolic supply and neuroprotection. In models of neuroinflammation these channels present aberrant functioning. Validation of the molecular mechanisms by which these membrane channels influence neurodegeneration particularly in Alzheimer's disease could lead to new and alternative therapeutic strategies targeting these channels.


Assuntos
Doença de Alzheimer/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Animais , Junções Comunicantes/patologia , Humanos
8.
Cell Death Differ ; 26(3): 580-596, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30006609

RESUMO

The precise contribution of astrocytes in neuroinflammatory process occurring in Parkinson's disease (PD) is not well characterized. In this study, using GRCx30CreERT2 mice that are conditionally inactivated for glucocorticoid receptor (GR) in astrocytes, we have examined the actions of astrocytic GR during dopamine neuron (DN) degeneration triggered by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results show significantly augmented DN loss in GRCx30CreERT2 mutant mice in substantia nigra (SN) compared to controls. Hypertrophy of microglia but not of astrocytes was greatly enhanced in SN of these astrocytic GR mutants intoxicated with MPTP, indicating heightened microglial reactivity compared to similarly-treated control mice. In the SN of GR astrocyte mutants, specific inflammation-associated transcripts ICAM-1, TNF-α and Il-1ß as well as TNF-α protein levels were significantly elevated after MPTP neurotoxicity compared to controls. Interestingly, this paralleled increased connexin hemichannel activity and elevated intracellular calcium levels in astrocytes examined in acute midbrain slices from control and mutant mice treated with MPP+ . The increased connexin-43 hemichannel activity was found in vivo in MPTP-intoxicated mice. Importantly, treatment of MPTP-injected GRCx30CreERT2 mutant mice with TAT-Gap19 peptide, a specific connexin-43 hemichannel blocker, reverted both DN loss and microglial activation; in wild-type mice there was partial but significant survival effect. In the SN of post-mortem PD patients, a significant decrease in the number of astrocytes expressing nuclear GR was observed, suggesting the participation of astrocytic GR deregulation of inflammatory process in PD. Overall, these data provide mechanistic insights into GR-modulated processes in vivo, specifically in astrocytes, that contribute to a pro-inflammatory state and dopamine neurodegeneration in PD pathology.


Assuntos
Astrócitos/metabolismo , Conexinas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Animais , Humanos , Masculino , Camundongos , Doença de Parkinson/patologia
9.
Int J Neuropsychopharmacol ; 21(7): 687-696, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635319

RESUMO

Background: Modafinil, a nonamphetaminic wake-promoting compound, is prescribed as first line therapy in narcolepsy, an invalidating disorder characterized by excessive daytime sleepiness and cataplexy. Although its mode of action remains incompletely known, recent studies indicated that modafinil modulates astroglial connexin-based gap junctional communication as administration of a low dose of flecainide, an astroglial connexin inhibitor, enhanced the wake-promoting and procognitive activity of modafinil in rodents and healthy volunteers. The aim of this study is to investigate changes in glucose cerebral metabolism in rodents, induced by the combination of modafinil+flecainide low dose (called THN102). Methods: The impact of THN102 on brain glucose metabolism was noninvasively investigated using 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography imaging in Sprague-Dawley male rats. Animals were injected with vehicle, flecainide, modafinil, or THN102 and further injected with 18F-2-fluoro-2-deoxy-D-glucose followed by 60-minute Positron Emission Tomography acquisition. 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography images were coregistered to a rat brain template and normalized from the total brain Positron Emission Tomography signal. Voxel-to-voxel analysis was performed using SPM8 software. Comparison of brain glucose metabolism between groups was then performed. Results: THN102 significantly increased regional brain glucose metabolism as it resulted in large clusters of 18F-2-fluoro-2-deoxy-D-glucose uptake localized in the cortex, striatum, and amygdala compared with control or drugs administered alone. These regions, highly involved in the regulation of sleep-wake cycle, emotions, and cognitive functions were hence quantitatively modulated by THN102. Conclusion: Data presented here provide the first evidence of a regional brain activation induced by THN102, currently being tested in a phase II clinical trial in narcoleptic patients.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Flecainida/farmacologia , Fluordesoxiglucose F18/farmacocinética , Modafinila/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Promotores da Vigília/farmacologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Combinação de Medicamentos , Flecainida/administração & dosagem , Masculino , Modafinila/administração & dosagem , Ratos , Ratos Sprague-Dawley , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Promotores da Vigília/administração & dosagem
10.
Glia ; 66(8): 1788-1804, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29683209

RESUMO

Accumulating evidence shows a key function for astrocytic connexin43 (Cx43) signaling in epilepsy. However, the lack of experimental distinction between Cx43 gap junction channels (GJCs) and hemichannels (HCs) has impeded the identification of the exact contribution of either channel configurations to epilepsy. We therefore investigated whether TAT-Gap19, a Cx mimetic peptide that inhibits Cx43 HCs but not the corresponding Cx43 GJCs, influences experimentally induced seizures in rodents. Dye uptake experiments in acute hippocampal slices of mice demonstrated that astroglial Cx43 HCs open in response to the chemoconvulsant pilocarpine and this was inhibited by TAT-Gap19. In vivo, pilocarpine-induced seizures as well as the accompanying increase in D-serine microdialysate levels were suppressed by Cx43 HC inhibition. Moreover, the anticonvulsant action of TAT-Gap19 was reversed by exogenous D-serine administration, suggesting that Cx43 HC inhibition protects against seizures by lowering extracellular D-serine levels. The anticonvulsive properties of Cx43 HC inhibition were further confirmed in electrical seizure mouse models, i.e. an acute 6 Hertz (Hz) model of refractory seizures and a chronic 6 Hz corneal kindling model. Collectively, these results indicate that Cx43 HCs play a role in seizures and underscore their potential as a novel and druggable target in epilepsy treatment.


Assuntos
Anticonvulsivantes/farmacologia , Astrócitos/efeitos dos fármacos , Conexina 43/metabolismo , Fragmentos de Peptídeos/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Astrócitos/metabolismo , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos
11.
J Neurosci Methods ; 303: 103-113, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29551292

RESUMO

Intercellular communication through gap junction channels plays a key role in cellular homeostasis and in synchronizing physiological functions, a feature that is modified in number of pathological situations. In the brain, astrocytes are the cell population that expresses the highest amount of gap junction proteins, named connexins. Several techniques have been used to assess the level of gap junctional communication in astrocytes, but so far they remain very difficult to apply in adult brain tissue. Here, using specific loading of astrocytes with sulforhodamine 101, we adapted the gap-FRAP (Fluorescence Recovery After Photobleaching) to acute hippocampal slices from 9 month-old adult mice. We show that gap junctional communication monitored in astrocytes with this technique was inhibited either by pharmacological treatment with a gap junctional blocker or in mice lacking the two main astroglial connexins, while a partial inhibition was measured when only one connexin was knocked-out. We validate this approach using a mathematical model of sulforhodamine 101 diffusion in an elementary astroglial network and a quantitative analysis of the exponential fits to the fluorescence recovery curves. Consequently, we consider that the adaptation of the gap-FRAP technique to acute brain slices from adult mice provides an easy going and valuable approach that allows overpassing this age-dependent obstacle and will facilitate the investigation of gap junctional communication in adult healthy or pathological brain.


Assuntos
Astrócitos/metabolismo , Conexinas/metabolismo , Recuperação de Fluorescência Após Fotodegradação/métodos , Junções Comunicantes/fisiologia , Hipocampo/metabolismo , Transdução de Sinais/fisiologia , Animais , Camundongos
12.
Curr Pharm Des ; 23(33): 4958-4968, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28982320

RESUMO

BACKGROUND: In Alzheimer's disease (AD), modification of astrocytic properties is a well-known and documented fact, but their involvement in pathophysiology has only been examined in recent years. One distinct hallmark of AD is reactive gliosis which are represented in microglial and astrocytic phenotype changes. This reactive gliosis has been associated with changes in the expression and function of connexins. Connexins are proteins that can form gap junction channels and hemichannels, and in a disease context, have shown increased expression in astrocytes that contact amyloid plaques in vivo. Amyloid plaques are aggregates of the amyloid-beta protein, which present in the AD brain in patients and in animal models. METHODS: Murine AD models demonstrate changes in connexin channel activity which mirror in cell culture systems treated with amyloid-beta peptide. This has been closely studied in the familial AD mouse model APPSwe/ PS1dE9 where the implications of connexin channel functions have been examined. RESULTS: These studies demonstrate that while gap junctional communication was unaffected, hemichannel activation could be detected in the astrocytes of hippocampal slices containing amyloid-beta plaques. Most critically, the activation of hemichannels is associated with the release of gliotransmitters (such as ATP and glutamate) which results in the maintenance of a high intracellular free Ca2+ concentration within astrocytes, which initiates the start of a vicious cycle. Strategies that target astroglial connexin hemichannels include the knocking out of the connexin 43 gene in astrocytes of the APPSwe/PS1dE9 mice, as well as using various pharmacological tools. This results in the decrease of gliotransmitter release and the alleviation of neuronal damage. This includes the reduction of oxidative stress and neuritic dystrophies in neurons that are typically associated with plaque formation in the hippocampus. Concusion: In this review, we summarize recent findings on astroglial connexin channels in the neurodegenerative process of Alzheimer's disease, and discuss how this can be a strategy in AD treatment to block the activity of hemichannels in astrocytes.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Doença de Alzheimer/tratamento farmacológico , Animais , Astrócitos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Fármacos Neuroprotetores/administração & dosagem
13.
J Neurosci ; 37(37): 9064-9075, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821660

RESUMO

Astrocytes interact dynamically with neurons by modifying synaptic activity and plasticity. This interplay occurs through a process named gliotransmission, meaning that neuroactive molecules are released by astrocytes. Acting as a gliotransmitter, D-serine, a co-agonist of the NMDA receptor at the glycine-binding site, can be released by astrocytes in a calcium [Ca2+]i-dependent manner. A typical feature of astrocytes is their high expression level of connexin43 (Cx43), a protein forming gap junction channels and hemichannels associated with dynamic neuroglial interactions. Pharmacological and genetic inhibition of Cx43 hemichannel activity reduced the amplitude of NMDA EPSCs in mouse layer 5 prefrontal cortex pyramidal neurons without affecting AMPA EPSC currents. This reduction of NMDA EPSCs was rescued by addition of D-serine in the extracellular medium. LTP of NMDA and AMPA EPSCs after high-frequency stimulation was reduced by prior inhibition of Cx43 hemichannel activity. Inactivation of D-serine synthesis within the astroglial network resulted in the reduction of NMDA EPSCs, which was rescued by adding extracellular D-serine. We showed that the activity of Cx43 hemichannels recorded in cultured astrocytes was [Ca2+]I dependent. Accordingly, in acute cortical slices, clamping [Ca2+]i at a low level in astroglial network resulted in an inhibition of NMDA EPSC potentiation that was rescued by adding extracellular D-serine. This work demonstrates that astroglial Cx43 hemichannel activity is associated with D-serine release. This process, occurring by direct permeation of D-serine through hemichannels or indirectly by Ca2+ entry and activation of other [Ca2+]i-dependent mechanisms results in the modulation of synaptic activity and plasticity.SIGNIFICANCE STATEMENT We recorded neuronal glutamatergic (NMDA and AMPA) responses in prefrontal cortex (PFC) neurons and used pharmacological and genetic interventions to block connexin-mediated hemichannel activity specifically in a glial cell population. For the first time in astrocytes, we demonstrated that hemichannel activity depends on the intracellular calcium concentration and is associated with D-serine release. Blocking hemichannel activity reduced the LTP of these excitatory synaptic currents triggered by high-frequency stimulation. These observations may be particularly relevant in the PFC, where D-serine and its converting enzyme are highly expressed.


Assuntos
Astrócitos/fisiologia , Sinalização do Cálcio/fisiologia , Conexina 43/metabolismo , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/fisiologia , Serina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurotransmissores/metabolismo
14.
Front Cell Neurosci ; 11: 174, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694772

RESUMO

Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory functions. Additionally, astrocyte domains have been involved in neurogenesis and neuronal differentiation during development; they participate in the "tripartite synapse" with both pre-synaptic and post-synaptic neurons by tuning down or up neuronal activities through the control of neuronal synaptic strength. Connexin-based hemichannels are also involved in those regulations of neuronal activities, however, this feature will not be considered in the present review. Furthermore, neuronal processes, transmitting electrical signals to chemical synapses, stringently control astroglial connexin expression, and channel functions. Long-range energy trafficking toward neurons through connexin-coupled astrocytes and plasticity of those networks are hence largely dependent on neuronal activity. Such reciprocal interactions between neurons and astrocyte networks involve neurotransmitters, cytokines, endogenous lipids, and peptides released by neurons but also other brain cell types, including microglial and endothelial cells. Over the past 10 years, knowledge about neuroglial interactions has widened and now includes effects of CNS-targeting drugs such as antidepressants, antipsychotics, psychostimulants, or sedatives drugs as potential modulators of connexin function and thus astrocyte networking activity. In physiological situations, neuroglial networking is consequently resulting from a two-way interaction between astrocyte gap junction-mediated networks and those made by neurons. As both cell types are modulated by CNS drugs we postulate that neuroglial networking may emerge as new therapeutic targets in neurological and psychiatric disorders.

15.
Glia ; 65(10): 1607-1625, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28703353

RESUMO

The contribution of reactive gliosis to the pathological phenotype of Alzheimer's disease (AD) opened the way for therapeutic strategies targeting glial cells instead of neurons. In such context, connexin hemichannels were proposed recently as potential targets since neuronal suffering is alleviated when connexin expression is genetically suppressed in astrocytes of a murine model of AD. Here, we show that boldine, an alkaloid from the boldo tree, inhibited hemichannel activity in astrocytes and microglia without affecting gap junctional communication in culture and acute hippocampal slices. Long-term oral administration of boldine in AD mice prevented the increase in glial hemichannel activity, astrocytic Ca2+ signal, ATP and glutamate release and alleviated hippocampal neuronal suffering. These findings highlight the important pathological role of hemichannels in AD mice. The neuroprotective effect of boldine treatment might provide the basis for future pharmacological strategies that target glial hemichannels to reduce neuronal damage in neurodegenerative diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Aporfinas/farmacologia , Aporfinas/uso terapêutico , Conexinas/metabolismo , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Cultivadas , Conexinas/genética , Modelos Animais de Doenças , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Neuritos/patologia , Neuroglia/metabolismo , Fármacos Neuromusculares Despolarizantes/farmacologia , Fármacos Neuromusculares Despolarizantes/uso terapêutico , Neurônios/fisiologia , Neurotransmissores/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
16.
Neurochem Res ; 42(9): 2519-2536, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28634726

RESUMO

Neuronal survival, electrical signaling and synaptic activity require a well-balanced micro-environment in the central nervous system. This is achieved by the blood-brain barrier (BBB), an endothelial barrier situated in the brain capillaries, that controls near-to-all passage in and out of the brain. The endothelial barrier function is highly dependent on signaling interactions with surrounding glial, neuronal and vascular cells, together forming the neuro-glio-vascular unit. Within this functional unit, connexin (Cx) channels are of utmost importance for intercellular communication between the different cellular compartments. Connexins are best known as the building blocks of gap junction (GJ) channels that enable direct cell-cell transfer of metabolic, biochemical and electric signals. In addition, beyond their role in direct intercellular communication, Cxs also form unapposed, non-junctional hemichannels in the plasma membrane that allow the passage of several paracrine messengers, complementing direct GJ communication. Within the NGVU, Cxs are expressed in vascular endothelial cells, including those that form the BBB, and are eminent in astrocytes, especially at their endfoot processes that wrap around cerebral vessels. However, despite the density of Cx channels at this so-called gliovascular interface, it remains unclear as to how Cx-based signaling between astrocytes and BBB endothelial cells may converge control over BBB permeability in health and disease. In this review we describe available evidence that supports a role for astroglial as well as endothelial Cxs in the regulation of BBB permeability during development as well as in disease states.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Conexinas/metabolismo , Neuroglia/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Comunicação Celular/fisiologia , Humanos , Mediadores da Inflamação/metabolismo , Neuroglia/patologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
17.
Front Mol Neurosci ; 10: 418, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326548

RESUMO

The non-receptor tyrosine kinase c-Src is an important mediator in several signaling pathways related to neuroinflammation. Our previous study showed that cortical injection of kainic acid (KA) promoted a transient increase in c-Src activity in reactive astrocytes surrounding the neuronal lesion. As a cell-penetrating peptide based on connexin43 (Cx43), specifically TAT-Cx43266-283, inhibits Src activity, we investigated the effect of TAT-Cx43266-283 on neuronal death promoted by cortical KA injections in adult mice. As expected, KA promoted neuronal death, estimated by the reduction in NeuN-positive cells and reactive gliosis, characterized by the increase in glial fibrillary acidic protein (GFAP) expression. Interestingly, TAT-Cx43266-283 injected with KA diminished neuronal death and reactive gliosis compared to KA or KA+TAT injections. In order to gain insight into the neuroprotective mechanism, we used in vitro models. In primary cultured neurons, TAT-Cx43266-283 did not prevent neuronal death promoted by KA, but when neurons were grown on top of astrocytes, TAT-Cx43266-283 prevented neuronal death promoted by KA. These observations demonstrate the participation of astrocytes in the neuroprotective effect of TAT-Cx43266-283. Furthermore, the neuroprotective effect was also present in non-contact co-cultures, suggesting the contribution of soluble factors released by astrocytes. As glial hemichannel activity is associated with the release of several factors, such as ATP and glutamate, that cause neuronal death, we explored the participation of these channels on the neuroprotective effect of TAT-Cx43266-283. Our results confirmed that inhibitors of ATP and NMDA receptors prevented neuronal death in co-cultures treated with KA, suggesting the participation of astrocyte hemichannels in neurotoxicity. Furthermore, TAT-Cx43266-283 reduced hemichannel activity promoted by KA in neuron-astrocyte co-cultures as assessed by ethidium bromide (EtBr) uptake assay. In fact, TAT-Cx43266-283 and dasatinib, a potent c-Src inhibitor, strongly reduced the activation of astrocyte hemichannels. In conclusion, our results suggest that TAT-Cx43266-283 exerts a neuroprotective effect through the reduction of hemichannel activity likely mediated by c-Src in astrocytes. These data unveil a new role of c-Src in the regulation of Cx43-hemichannel activity that could be part of the mechanism by which astroglial c-Src participates in neuroinflammation.

18.
Glia ; 65(1): 122-137, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27757991

RESUMO

The mechanisms involved in Alzheimer's disease are not completely understood and how astrocytes and their gliotransmission contribute to this neurodegenerative disease remains to be fully elucidated. Previous studies have shown that amyloid-ß peptide (Aß) induces neuronal death by a mechanism that involves the excitotoxic release of ATP and glutamate associated to astroglial hemichannel opening. We have demonstrated that synthetic and endogenous cannabinoids (CBs) reduce the opening of astrocyte Cx43 hemichannels evoked by activated microglia or inflammatory mediators. Nevertheless, whether CBs could prevent the astroglial hemichannel-dependent death of neurons evoked by Aß is unknown. Astrocytes as well as acute hippocampal slices were treated with the active fragment of Aß alone or in combination with the following CBs: WIN, 2-AG, or methanandamide (Meth). Hemichannel activity was monitored by single channel recordings and by time-lapse ethidium uptake while neuronal death was assessed by Fluoro-Jade C staining. We report that CBs fully prevented the hemichannel activity and inflammatory profile evoked by Aß in astrocytes. Moreover, CBs fully abolished the Aß-induced release of excitotoxic glutamate and ATP associated to astrocyte Cx43 hemichannel activity, as well as neuronal damage in hippocampal slices exposed to Aß. Consequently, this work opens novel avenues for alternative treatments that target astrocytes to maintain neuronal function and survival during AD. GLIA 2016 GLIA 2017;65:122-137.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Astrócitos/efeitos dos fármacos , Canabinoides/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Conexinas/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Camundongos , Neurônios/metabolismo
19.
Sci Rep ; 6: 38766, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941941

RESUMO

Antidepressants, prescribed as first line treatment of neuropathic pain, have a limited efficacy and poorly tolerated side effects. Because recent studies pointed out the implication of astroglial connexins (Cx) in both neuropathic pain and antidepressive treatment, we investigated whether their blockade by mefloquine could modulate the action of the tricyclic antidepressant amitriptyline. Using primary cultures, we found that both mefloquine and amitriptyline inhibited Cx43-containing gap junctions, and that the drug combination acted synergically. We then investigated whether mefloquine could enhance amitriptyline efficacy in a preclinical model of neuropathic pain. Sprague-Dawley rats that underwent chronic unilateral constriction injury (CCI) to the sciatic nerve (SN) were treated with either amitriptyline, mefloquine or the combination of both drugs. Whereas acute treatments were ineffective, chronic administration of amitriptyline reduced CCI-SN-induced hyperalgesia-like behavior, and this effect was markedly enhanced by co-administration of mefloquine, which was inactive on its own. No pharmacokinetic interactions between both drugs were observed and CCI-SN-induced neuroinflammatory and glial activation markers remained unaffected by these treatments in dorsal root ganglia and spinal cord. Mechanisms downstream of CCI-SN-induced neuroinflammation and glial activation might therefore be targeted. Connexin inhibition in astroglia could represent a promising approach towards improving neuropathic pain therapy by antidepressants.


Assuntos
Amitriptilina/farmacologia , Astrócitos/metabolismo , Conexina 43/antagonistas & inibidores , Junções Comunicantes/metabolismo , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Neuropatia Ciática/tratamento farmacológico , Animais , Astrócitos/patologia , Conexina 43/metabolismo , Junções Comunicantes/patologia , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Neuralgia/metabolismo , Neuralgia/patologia , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia
20.
J Transl Med ; 14(1): 330, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899102

RESUMO

A unique workshop was recently held focusing on enhancing collaborations leading to identify and update the development of therapeutic strategies targeting connexin/pannexin large pore channels. Basic scientists exploring the functions of these channels in various pathologies gathered together with leading pharma companies which are targeting gap junction proteins for specific therapeutic applications. This highlights how paths of discovery research can converge with therapeutic strategies in innovative ways to enhance target identification and validation.


Assuntos
Conexinas/metabolismo , Terapia de Alvo Molecular , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Conexinas/química , Doença , Humanos , Proteínas do Tecido Nervoso/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...