Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 90(13): 6001-6013, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27099312

RESUMO

UNLABELLED: Although all 12 subtypes of human interferon alpha (IFN-α) bind the same receptor, recent results have demonstrated that they elicit unique host responses and display distinct efficacies in the control of different viral infections. The IFN-α2 subtype is currently in HIV-1 clinical trials, but it has not consistently reduced viral loads in HIV-1 patients and is not the most effective subtype against HIV-1 in vitro We now demonstrate in humanized mice that, when delivered at the same high clinical dose, the human IFN-α14 subtype has very potent anti-HIV-1 activity whereas IFN-α2 does not. In both postexposure prophylaxis and treatment of acute infections, IFN-α14, but not IFN-α2, significantly suppressed HIV-1 replication and proviral loads. Furthermore, HIV-1-induced immune hyperactivation, which is a prognosticator of disease progression, was reduced by IFN-α14 but not IFN-α2. Whereas ineffective IFN-α2 therapy was associated with CD8(+) T cell activation, successful IFN-α14 therapy was associated with increased intrinsic and innate immunity, including significantly higher induction of tetherin and MX2, increased APOBEC3G signature mutations in HIV-1 proviral DNA, and higher frequencies of TRAIL(+) NK cells. These results identify IFN-α14 as a potent new therapeutic that operates via mechanisms distinct from those of antiretroviral drugs. The ability of IFN-α14 to reduce both viremia and proviral loads in vivo suggests that it has strong potential as a component of a cure strategy for HIV-1 infections. The broad implication of these results is that the antiviral efficacy of each individual IFN-α subtype should be evaluated against the specific virus being treated. IMPORTANCE: The naturally occurring antiviral protein IFN-α2 is used to treat hepatitis viruses but has proven rather ineffective against HIV in comparison to triple therapy with the antiretroviral (ARV) drugs. Although ARVs suppress the replication of HIV, they fail to completely clear infections. Since IFN-α acts by different mechanism than ARVs and has been shown to reduce HIV proviral loads, clinical trials are under way to test whether IFN-α2 combined with ARVs might eradicate HIV-1 infections. IFN-α is actually a family of 12 distinct proteins, and each IFN-α subtype has different efficacies toward different viruses. Here, we use mice that contain a human immune system, so they can be infected with HIV. With this model, we demonstrate that while IFN-α2 is only weakly effective against HIV, IFN-α14 is extremely potent. This discovery identifies IFN-α14 as a more powerful IFN-α subtype for use in combination therapy trials aimed toward an HIV cure.


Assuntos
Antivirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Interferon-alfa/uso terapêutico , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Desaminase APOBEC-3G/genética , Animais , Antígenos CD/genética , Linfócitos T CD8-Positivos/imunologia , Progressão da Doença , Proteínas Ligadas por GPI/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Imunidade Inata , Interferon-alfa/classificação , Interferon-alfa/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Camundongos , Camundongos Transgênicos , Proteínas de Resistência a Myxovirus/genética , Viremia/tratamento farmacológico
2.
Sci Rep ; 6: 24865, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27121087

RESUMO

The hepatitis B virus (HBV) has been described as stealth virus subverting immune responses initially upon infection. Impaired toll-like receptor signaling by the HBV surface antigen (HBsAg) attenuates immune responses to facilitate chronic infection. This implies that HBV replication may trigger host innate immune responses in the absence of HBsAg. Here we tested this hypothesis, using highly replicative transgenic mouse models. An HBV replication-dependent expression of antiviral genes was exclusively induced in HBsAg-deficient mice. These interferon responses attributed to toll-like receptor 3 (TLR3)-activated Kupffer and liver sinusoidal endothelial cells and further controlled the HBV genome replication. However, activation of TLR3 with exogenous ligands indicated additional HBs-independent immune evasion events. Our data demonstrate that in the absence of HBsAg, hepatic HBV replication leads to Tlr3-dependent interferon responses in non-parenchymal liver cells. We hypothesize that HBsAg is a major HBV-mediated evasion mechanism controlling endogenous antiviral responses in the liver. Eradication of HBsAg as a therapeutic goal might facilitate the induction of endogenous antiviral immune responses in patients chronically infected with HBV.


Assuntos
Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Evasão da Resposta Imune , Interferons/antagonistas & inibidores , Receptor 3 Toll-Like/antagonistas & inibidores , Replicação Viral , Animais , Antígenos de Superfície da Hepatite B/genética , Humanos , Camundongos , Camundongos Transgênicos
3.
Sci Rep ; 6: 20425, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26846717

RESUMO

Tetherin/BST-2 is a host restriction factor that inhibits retrovirus release from infected cells in vitro by tethering nascent virions to the plasma membrane. However, contradictory data exists on whether Tetherin inhibits acute retrovirus infection in vivo. Previously, we reported that Tetherin-mediated inhibition of Friend retrovirus (FV) replication at 2 weeks post-infection correlated with stronger natural killer, CD4+ T and CD8+ T cell responses. Here, we further investigated the role of Tetherin in counteracting retrovirus replication in vivo. FV infection levels were similar between wild-type (WT) and Tetherin KO mice at 3 to 7 days post-infection despite removal of a potent restriction factor, Apobec3/Rfv3. However, during this phase of acute infection, Tetherin enhanced myeloid dendritic cell (DC) function. DCs from infected, but not uninfected, WT mice expressed significantly higher MHC class II and the co-stimulatory molecule CD80 compared to Tetherin KO DCs. Tetherin-associated DC activation during acute FV infection correlated with stronger NK cell responses. Furthermore, Tetherin+ DCs from FV-infected mice more strongly stimulated FV-specific CD4+ T cells ex vivo compared to Tetherin KO DCs. The results link the antiretroviral and immunomodulatory activity of Tetherin in vivo to improved DC activation and MHC class II antigen presentation.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Vírus da Leucemia Murina de Friend/fisiologia , Glicoproteínas de Membrana/metabolismo , Infecções por Retroviridae/patologia , Doença Aguda , Animais , Antígenos CD/genética , Antígeno B7-1/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Vírus da Leucemia Murina de Friend/genética , Interleucina-15/metabolismo , Interleucina-2/análise , Interleucina-2/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células NIH 3T3 , Fenótipo , RNA Viral/sangue , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/veterinária , Replicação Viral
4.
Brain Behav Immun ; 54: 252-259, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26880342

RESUMO

Several lines of evidence indicate that the sympathetic nervous system (SNS) might be involved in the pathogenesis and progression of retroviral infections. However, experimental data are scarce and findings inconsistent. Here, we investigated the role of the SNS during acute infection with Friend virus (FV), a pathogenic murine retrovirus that causes polyclonal proliferation of erythroid precursor cells and splenomegaly in adult mice. Experimental animals were infected with FV complex, and viral load, spleen weight, and splenic noradrenaline (NA) concentration was analyzed until 25 days post infection. Results show that FV infection caused a massive but transient depletion in splenic NA during the acute phase of the disease. At the peak of the virus-induced splenomegaly, splenic NA concentration was reduced by about 90% compared to naïve uninfected mice. Concurrently, expression of the catecholamine degrading enzymes monoamine oxidase A (MAO-A) and catechol-O-methyltransferase (COMT) was significantly upregulated in immune cells of the spleen. Pharmacological inhibition of MAO-A and COMT by the selective inhibitors clorgyline and 3,5-dinitrocatechol, respectively, efficiently blocked NA degradation and significantly reduced viral load and virus-induced splenomegaly. In contrast, chemical sympathectomy prior to FV inoculation aggravated the acute infection and extended the duration of the disease. Together these findings demonstrate that catecholamine availability at the site of viral replication is an important factor affecting the course of retroviral infections.


Assuntos
Catecolaminas/uso terapêutico , Vírus da Leucemia Murina de Friend/isolamento & purificação , Infecções por Retroviridae/terapia , Animais , Catecol O-Metiltransferase/metabolismo , Catecolaminas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Retroviridae , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Baço/imunologia , Simpatectomia Química , Sistema Nervoso Simpático/virologia , Carga Viral
6.
PLoS Pathog ; 11(11): e1005254, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26529416

RESUMO

HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs) likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8) and weak (IFNα1) subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies.


Assuntos
Antivirais/farmacologia , Células Dendríticas/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , Interferon-alfa/imunologia , Replicação Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Humanos , Interferon-alfa/farmacologia , Vírion/metabolismo
7.
PLoS Pathog ; 11(10): e1005224, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26484769

RESUMO

Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.


Assuntos
Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Evasão da Resposta Imune/imunologia , Infecções por Retroviridae/imunologia , Animais , Linfócitos T CD8-Positivos/virologia , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Retroviridae/imunologia
8.
Retrovirology ; 12: 66, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26220086

RESUMO

BACKGROUND: It is well established that effector T cell responses are crucial for the control of most virus infections, but they are often tightly controlled by regulatory T cells (Treg) to minimize immunopathology. NK cells also contribute to virus control but it is not known if their antiviral effect is influenced by virus-induced Tregs as well. We therefore analyzed whether antiretroviral NK cell functions are inhibited by Tregs during an acute Friend retrovirus infection of mice. RESULTS: Selective depletion of Tregs by using the transgenic DEREG mouse model resulted in improved NK cell proliferation, maturation and effector cell differentiation. Suppression of NK cell functions depended on IL-2 consumption by Tregs, which could be overcome by specific NK cell stimulation with an IL-2/anti-IL-2 mAb complex. CONCLUSIONS: The current study demonstrates that virus-induced Tregs indeed inhibit antiviral NK cell responses and describes a targeted immunotherapy that can abrogate the suppression of NK cells by Tregs.


Assuntos
Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Infecções por Retroviridae/imunologia , Linfócitos T Reguladores/imunologia , Animais , Animais Geneticamente Modificados , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Retroviridae/imunologia , Infecções por Retroviridae/virologia
9.
Sci Rep ; 5: 10501, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25994622

RESUMO

We have previously shown that Toll-like receptor (TLR) agonists contribute to the control of viral infection by augmenting virus-specific CD8(+) T-cell responses. It is also well established that signaling by TLRs results in the production of pro-inflammatory cytokines such as interleukin 6 (IL-6). However, how these pro-inflammatory cytokines influence the virus-specific CD8(+) T-cell response during the TLR agonist stimulation remained largely unknown. Here, we investigated the role of TLR-induced IL-6 in shaping virus-specific CD8(+) T-cell responses in the Friend retrovirus (FV) mouse model. We show that the TLR agonist induced IL-6 counter-regulates effector CD8(+) T-cell responses. IL-6 potently inhibited activation and cytokine production of CD8(+) T cells in vitro. This effect was mediated by a direct stimulation of CD8(+) T cells by IL-6, which induced upregulation of STAT3 phosphorylation and SOCS3 and downregulated STAT4 phosphorylation and T-bet. Moreover, combining TLR stimulation and IL-6 blockade during an acute FV infection resulted in enhanced virus-specific CD8(+) T-cell immunity and better control of viral replication. These results have implications for our understanding of the role of TLR induced pro-inflammatory cytokines in regulating effector T cell responses and for the development of therapeutic strategies to overcome T cell dysfunction in chronic viral infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Leucemia Murina de Friend/patogenicidade , Interleucina-6/metabolismo , Infecções por Retroviridae/patologia , Receptores Toll-Like/agonistas , Doença Aguda , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Vírus da Leucemia Murina de Friend/fisiologia , Imunidade Celular , Interferon gama/farmacologia , Interleucina-6/genética , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Replicação Viral
10.
Retrovirology ; 11: 126, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25539593

RESUMO

BACKGROUND: Pathogen recognition drives host defense towards viral infections. Specific groups rather than single members of the protein family of pattern recognition receptors (PRRs) such as membrane spanning Toll-like receptors (TLRs) and cytosolic helicases might mediate sensing of replication intermediates of a specific virus species. TLR7 mediates host sensing of retroviruses and could significantly influence retrovirus-specific antibody responses. However, the origin of efficient cell-mediated immunity towards retroviruses is unknown. Double-stranded RNA intermediates produced during retroviral replication are good candidates for immune stimulatory viral products. Thus, we considered TLR3 as primer of cell-mediated immunity against retroviruses in vivo. RESULTS: Infection of mice deficient in TLR3 (TLR3(-/-)) with Friend retrovirus (FV) complex revealed higher viral loads during acute retroviral infection compared to wild type mice. TLR3(-/-) mice exhibited significantly lower expression levels of type I interferons (IFNs) and IFN-stimulated genes like Pkr or Ifi44, as well as reduced numbers of activated myeloid dendritic cells (DCs) (CD86(+) and MHC-II(+)). DCs generated from FV-infected TLR3(-/-) mice were less capable of priming virus-specific CD8(+) T cell proliferation. Moreover, cytotoxicity of natural killer (NK) cells as well as CD8(+) T cells were reduced in vitro and in vivo, respectively, in FV-infected TLR3(-/-) mice. CONCLUSIONS: TLR3 mediates antiretroviral cytotoxic NK cell and CD8(+) T cell activity in vivo. Our findings qualify TLR3 as target of immune therapy against retroviral infections.


Assuntos
Vírus da Leucemia Murina de Friend/imunologia , Receptor 3 Toll-Like/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Células Matadoras Naturais/imunologia , Leucemia Experimental/imunologia , Leucemia Experimental/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/virologia , Receptor 3 Toll-Like/deficiência , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/virologia , Carga Viral
11.
Immunity ; 40(6): 949-60, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24909887

RESUMO

Despite development of new antiviral drugs, viral infections are still a major health problem. The most potent antiviral defense mechanism is the innate production of type I interferon (IFN-I), which not only limits virus replication but also promotes antiviral T cell immunity through mechanisms, which remain insufficiently studied. Using the murine lymphocytic choriomeningitis virus model system, we show here that IFN-I signaling on T cells prevented their rapid elimination in vivo. Microarray analyses uncovered that IFN-I triggered the expression of selected inhibitory NK-cell-receptor ligands. Consequently, T cell immunity of IFN-I receptor (IFNAR)-deficient T cells could be restored by NK cell depletion or in NK-cell-deficient hosts (Nfil3(-/-)). The elimination of Ifnar1(-/-) T cells was dependent on NK-cell-mediated perforin expression. In summary, we identified IFN-I as a key player regulating the protection of T cells against regulatory NK cell function.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica , Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Coriomeningite Linfocítica/imunologia , Receptor de Interferon alfa e beta/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Cultivadas , Imunidade Inata , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perforina/biossíntese , Receptor de Interferon alfa e beta/genética , Transdução de Sinais/imunologia , Replicação Viral/imunologia
12.
PLoS One ; 9(3): e90977, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618716

RESUMO

Interferon alpha (IFN-α) is commonly used for the treatment of chronic hepatitis B (CHB) patients. Many factors including viral genetics may determine the outcome of IFN-α therapy. In this study, we tested whether the expression of IFN-α directly in the liver inhibits HBV gene expression and replication using a HBV hydrodynamic injection (HI) mouse model. Two replication-competent clones from different HBV isolates that belonging to HBV genotype A and B based on a pAAV vector (pAAV-HBV-A and pAAV-HBV-B) were compared for their susceptibility to IFN-α. HBV clones were injected into mice either alone or in combination with a murine (m) IFN-α expression plasmid (pmIFN-α). HBsAg and HBeAg concentrations and HBV DNA levels in mice differed after injection of these two HBV clones. Co-application of pmIFN-α together with the two distinct isolates resulted in markedly different kinetics of decline of HBsAg, HBeAg, and HBV DNA levels in the mice. Immunohistochemical staining of liver sections with anti-HBc showed that mIFN-α application completely inhibited the expression of HBcAg in mice inoculated with pAAV-HBV-B, whereas the expression of HBcAg was only reduced in mice with pAAV-HBV-A. Consistently, mice injected with pAAV-HBV-B and pmIFN-α showed higher expression levels of the IFN-stimulated genes (ISGs) ISG15, OAS, PKR as well as proinflammatory cytokine IL-6 in the liver. In addition, expression levels of anti-inflammatory cytokine IL-10 was down-regulated significantly in liver of the mice injected with pAAV-HBV-B and pmIFN-α. Our data demonstrate that IFN-α exerts antiviral activity in HBV mouse model, but different HBV isolates may have diverse susceptibility to IFN-α.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/virologia , Interferon-alfa/farmacologia , Animais , Antivirais/administração & dosagem , Antivirais/farmacocinética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Genótipo , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/sangue , Antígenos de Superfície da Hepatite B/imunologia , Antígenos E da Hepatite B/sangue , Antígenos E da Hepatite B/imunologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/isolamento & purificação , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferon-alfa/administração & dosagem , Interferon-alfa/farmacocinética , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Carga Viral
13.
Int Immunol ; 26(1): 35-46, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24065781

RESUMO

OBJECTIVES: The therapeutic application of small interfering RNAs (siRNAs) is limited by the induction of severe off-target effects, especially in the liver. Therefore, we assessed the potential of differently modified siRNAs to induce the hepatic innate immune system in vitro and in vivo. METHODS: Primary isolated liver cells were transfected with siRNAs against apolipoprotein B1 (APOB1), luciferase (LUC) or galactosidase (GAL). For in vivo use, siRNAs were formulated in lipid nanoparticles (LNPs) and administered intravenously to C57BL/6 mice. Liver tissue was collected 6-48 h after injection and knock-down efficiency or immune responses were determined by quantitative reverse-transcription-linked PCR. RESULTS: Unmodified GAL siRNA transiently induced the expression of TNF-α, IL-6, IL-10, IFN-ß and IFN-sensitive gene 15 in vivo, whereas a formulation of 2'-O-methylated-LUC siRNA had no such effects. Formulation of unmodified APOB1-specific siRNA suppressed APOB1 mRNA levels by ~80% in the liver 48h after application. The results were paralleled in vitro, where transfection of liver cells with unmodified siRNAs, but not with chemically modified siRNAs, led to cell-type-specific induction of immune genes. These immune responses were not observed in MYD88-deficient mice or in chloroquine-treated cells in vitro. CONCLUSIONS: Our data indicate that siRNAs activate endosomal Toll-like receptors in different liver-derived cell types to various degrees, in vitro. LNP-formulated siRNA selectively leads to hepatic knock-down of target genes in vivo. Here, off-target immune responses are restricted to non-parenchymal liver cells. However, 2'-O-methyl modifications of siRNA largely avoid immune-stimulatory effects, which is a crucial prerequisite for the development of safe and efficient RNA-interference-based therapeutics.


Assuntos
Hepatócitos/imunologia , Sistema Imunitário/imunologia , Imunidade Inata/imunologia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/imunologia , Receptores Toll-Like/imunologia , Animais , Imunidade Inata/genética , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Fígado , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Interferente Pequeno/genética , Receptores Toll-Like/genética , Transfecção/métodos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
14.
Retrovirology ; 10: 127, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24182203

RESUMO

BACKGROUND: In many virus infections natural killer (NK) cells are critical for the rapid containment of virus replication. Polymorphisms in NK cell receptors as well as viral escape from NK cell responses are associated with pathogenesis and viral loads in HIV-infected individuals, emphasizing their importance in retroviral immunity. In contrast, NK cells of LCMV-infected mice dampened virus-specific T cell responses resulting in impaired virus control. Thus, the exact role of NK cells during different phases of viral infections remains elusive. In this study we characterized the NK cell response at different time points of an acute retroviral infection by using the Friend retrovirus (FV) mouse model. FINDINGS: Depletion of NK1.1⁺ cells during the initial phase of FV infection (3 to 4 days post infection) resulted in increased viral loads, which correlated with enhanced target cell killing and elevated NK cell effector functions. At days 7 to 15 post infection, NK and NKT cells did not contribute to anti-retroviral immunity. In the transition phase between acute and chronic infection (30 days post infection), NK and NKT cells exhibited an inhibitory role and their depletion resulted in reduced viral loads and significantly improved FV-specific CD8⁺ T cell responses. CONCLUSIONS: Our results demonstrate an opposed activity of NK cells during retroviral infection. They were protective in the initial phase of infection, when adaptive T cell responses were not yet detectable, but were dispensable for viral immunity after T cell expansion. At later time points they exhibited regulatory functions in inhibiting virus-specific CD8⁺ T cell responses.


Assuntos
Vírus da Leucemia Murina de Friend/imunologia , Células Matadoras Naturais/imunologia , Leucemia Experimental/imunologia , Células T Matadoras Naturais/imunologia , Infecções por Retroviridae/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Procedimentos de Redução de Leucócitos , Camundongos , Fatores de Tempo , Carga Viral
15.
Cell Rep ; 4(4): 689-96, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23972988

RESUMO

Aicardi-Goutières syndrome (AGS), a hereditary autoimmune disease, clinically and biochemically overlaps with systemic lupus erythematosus (SLE) and, like SLE, is characterized by spontaneous type I interferon (IFN) production. The finding that defects of intracellular nucleases cause AGS led to the concept that intracellular accumulation of nucleic acids triggers inappropriate production of type I IFN and autoimmunity. AGS can also be caused by defects of SAMHD1, a 3' exonuclease and deoxynucleotide (dNTP) triphosphohydrolase. Human SAMHD1 is an HIV-1 restriction factor that hydrolyzes dNTPs and decreases their concentration below the levels required for retroviral reverse transcription. We show in gene-targeted mice that also mouse SAMHD1 reduces cellular dNTP concentrations and restricts retroviral replication in lymphocytes, macrophages, and dendritic cells. Importantly, the absence of SAMHD1 triggered IFN-ß-dependent transcriptional upregulation of type I IFN-inducible genes in various cell types indicative of spontaneous IFN production. SAMHD1-deficient mice may be instrumental for elucidating the mechanisms that trigger pathogenic type I IFN responses in AGS and SLE.


Assuntos
Proteínas Monoméricas de Ligação ao GTP/metabolismo , Replicação Viral , Animais , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Desoxirribonucleotídeos/metabolismo , Vírus da Leucemia Murina de Friend/metabolismo , Vírus da Leucemia Murina de Friend/fisiologia , HIV-1/metabolismo , HIV-1/fisiologia , Interferon beta/genética , Interferon beta/metabolismo , Linfócitos/metabolismo , Linfócitos/virologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transcrição Reversa , Proteína 1 com Domínio SAM e Domínio HD , Transcrição Gênica , Regulação para Cima
16.
Retrovirology ; 10: 58, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23738889

RESUMO

BACKGROUND: Co-infection of HIV patients with cytomegalovirus (CMV) is associated with enhanced AIDS progression and CMV end-organ diseases. On the other hand, persistent CMV infection has recently been shown to decrease tumor relapse and protect against lethal bacterial infection. The influence of persistent CMV on the outcome of an acute retroviral superinfection is still unknown. RESULTS: Here we show that a persistent murine CMV (mCMV) infection surprisingly confers higher resistance to a primary Friend retrovirus infection (FV) of mice. Decreased FV titers and augmented FV-specific CD8 T-cell responses were found in mCMV infected mice during primary FV superinfection. NK cells produced higher amounts of IFNgamma after FV infection of persistently mCMV infected mice suggesting that these cells were involved in the 'protective' effect. Depletion of NK1.1+ cells or neutralization of IFNgamma during FV superinfection abrogated the mCMV-mediated effect. CONCLUSION: Our data demonstrate for the first time that a persistent CMV infection induces long-lasting NK cell responses that can enhance immunity to primary retroviral infections. To our knowledge, studies investigating primary HIV infection have not analyzed the role of the CMV seropositivity in these patients. Our observations suggest that NK cells in CMV seropositive individuals might contribute to the control of primary HIV infection.


Assuntos
Vírus da Leucemia Murina de Friend/imunologia , Infecções por Herpesviridae/imunologia , Células Matadoras Naturais/imunologia , Leucemia Experimental/imunologia , Muromegalovirus/imunologia , Infecções por Retroviridae/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Coinfecção/imunologia , Coinfecção/virologia , Modelos Animais de Doenças , Resistência à Doença , Infecções por Herpesviridae/virologia , Leucemia Experimental/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/virologia
17.
Biol Chem ; 394(4): 495-505, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23362200

RESUMO

Dendritic cells (DCs) are an important link between innate and adaptive immunity. DCs get activated in inflamed tissues where oxygen tension is usually low, which requires the transcription factor hypoxia inducible factor (HIF)-1 for cellular adaptation. To investigate whether the HIF-1 transcriptional complex plays a pivotal role in the function of DCs, we compared the effects of exogenous inflammatory stimuli and hypoxia on HIF-1α in bone marrow-derived DCs from wild type and myeloid-specific HIF-1α knock-out mice. We showed that the Toll-like receptor ligands lipopolysaccharides and cytosine-phosphatidyl-guanines significantly induce HIF-1α mRNA and protein, leading to elevated HIF-1 target gene expression of vascular endothelial growth factor. In contrast, polyinosinic:polycytidylic acid did not show comparable effects. Furthermore the potential to up-regulate inflammatory cytokines critically influences DC function. Our data demonstrate that HIF-1α protein is needed for adequate production of interferon-α and -ß. In co-cultures of DCs and cytotoxic T cells, we observed that DCs lacking active HIF-1α protein induce significantly less CD278 and granzyme B mRNA in T cells. We conclude that HIF-1α plays a crucial role in DC interferon production and T cell activation, linking the innate and adaptive immune system.


Assuntos
Células Dendríticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interferons/biossíntese , Animais , Western Blotting , Células Cultivadas , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interferon Tipo I/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
18.
J Immunol ; 190(4): 1583-90, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23315078

RESUMO

Therapeutic administration of IFN-α in clinical trials significantly reduced HIV-1 plasma viral load and human T-lymphotropic virus type I proviral load in infected patients. The mechanism may involve the concerted action of multiple antiretroviral effectors collectively known as "restriction factors," which could vary in relative importance according to the magnitude of transcriptional induction. However, direct genetic approaches to identify the relevant IFN-α restriction factors will not be feasible in humans in vivo. Meanwhile, mice encode an analogous set of restriction factor genes and could be used to obtain insights on how IFN-α could inhibit retroviruses in vivo. As expected, IFN-α treatment of mice significantly upregulated the transcription of multiple restriction factors including Tetherin/BST2, SAMHD1, Viperin, ISG15, OAS1, and IFITM3. However, a dominant antiretroviral factor, Apobec3, was only minimally induced. To determine whether Apobec3 was necessary for direct IFN-α antiretroviral action in vivo, wild-type and Apobec3-deficient mice were infected with Friend retrovirus, then treated with IFN-α. Treatment of infected wild-type mice with IFN-α significantly reduced acute plasma viral load 28-fold, splenic proviral load 5-fold, bone marrow proviral load 14-fold, and infected bone marrow cells 7-fold, but no inhibition was observed in Apobec3-deficient mice. These findings reveal that IFN-α inhibits acute Friend retrovirus infection primarily through the antiviral effector Apobec3 in vivo, demonstrate that transcriptional induction levels did not predict the mechanism of IFN-α-mediated control, and highlight the potential of the human APOBEC3 proteins as therapeutic targets against pathogenic retrovirus infections.


Assuntos
Antivirais/administração & dosagem , Citidina Desaminase/fisiologia , Vírus da Leucemia Murina de Friend/imunologia , Interferon-alfa/administração & dosagem , Infecções por Retroviridae/terapia , Infecções por Retroviridae/virologia , Replicação Viral/imunologia , Doença Aguda , Animais , Antivirais/uso terapêutico , Células Cultivadas , Citidina Desaminase/deficiência , Citidina Desaminase/genética , Vírus da Leucemia Murina de Friend/patogenicidade , Humanos , Interferon-alfa/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Retroviridae/imunologia , Viremia/imunologia , Viremia/terapia , Viremia/virologia
19.
PLoS Pathog ; 8(8): e1002868, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912583

RESUMO

The innate immune response mediated by cells such as natural killer (NK) cells is critical for the rapid containment of virus replication and spread during acute infection. Here, we show that subtype 11 of the type I interferon (IFN) family greatly potentiates the antiviral activity of NK cells during retroviral infection. Treatment of mice with IFN-α11 during Friend retrovirus infection (FV) significantly reduced viral loads and resulted in long-term protection from virus-induced leukemia. The effect of IFN-α11 on NK cells was direct and signaled through the type I IFN receptor. Furthermore, IFN-α11-mediated activation of NK cells enabled cytolytic killing of FV-infected target cells via the exocytosis pathway. Depletion and adoptive transfer experiments illustrated that NK cells played a major role in successful IFN-α11 therapy. Additional experiments with Mouse Cytomegalovirus infections demonstrated that the therapeutic effect of IFN-α11 is not restricted to retroviruses. The type I IFN subtypes 2 and 5, which bind the same receptor as IFN-α11, did not elicit similar antiviral effects. These results demonstrate a unique and subtype-specific activation of NK cells by IFN-α11.


Assuntos
Vírus da Leucemia Murina de Friend/imunologia , Interferon-alfa/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Infecções por Retroviridae/imunologia , Animais , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais/imunologia
20.
J Immunol ; 187(7): 3730-7, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21873525

RESUMO

It was recently reported that inhibitory molecules such as programmed death-1 (PD-1) were upregulated on CD8(+) T cells during acute Friend retrovirus infection and that the cells were prematurely exhausted and dysfunctional in vitro. The current study confirms that most activated CD8(+) T cells upregulated expression of PD-1 during acute infection and revealed a dichotomy of function between PD-1(hi) and PD-1(lo) subsets. More PD-1(lo) cells produced antiviral cytokines such as IFN-γ and TNF-α, whereas more PD-1(hi) cells displayed characteristics of cytotoxic effectors such as production of granzymes and surface expression of CD107a. Importantly, CD8(+) T cells mediated rapid in vivo cytotoxicity and were critical for control of acute Friend virus replication. Thus, direct ex vivo analyses and in vivo experiments revealed high CD8(+) T cell functionality and indicate that PD-1 expression during acute infection is not a marker of T cell exhaustion.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Leucemia Experimental/imunologia , Receptor de Morte Celular Programada 1/biossíntese , Infecções por Retroviridae/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Separação Celular , Citometria de Fluxo , Vírus da Leucemia Murina de Friend/imunologia , Leucemia Experimental/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Infecções por Retroviridae/metabolismo , Infecções Tumorais por Vírus/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...