Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257263

RESUMO

Multi-step electron transfer reactions are important to the function of many cellular systems. The ways in which such systems have evolved to direct electrons along specific pathways are largely understood, but less so are the ways in which the reduction-oxidation potentials of individual redox sites are controlled. We prepared a series of three new artificial variants of Pseudomonas aeruginosa azurin where a tyrosine (Tyr109) is situated between the native Cu ion and a Ru(II) photosensitizer tethered to a histidine (His107). Arginine, glutamine, or methionine were introduced as position 122, which is near to Tyr109. We investigated the rate of CuI oxidation by a flash-quench generated Ru(III) oxidant over pH values from 5 to 9. While the identity of the residue at position 122 affects some of the physical properties of Tyr109, the rates of CuI oxidation are only weakly dependent on the identity of the residue at 122. The results highlight that more work is still needed to understand how non-covalent interactions of redox active groups are affected in redox proteins.


Assuntos
Elétrons , Tirosina , Glutamina , Metionina , Arginina
2.
ACS Omega ; 8(22): 19798-19806, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305310

RESUMO

Redox-active amino acid residues are at the heart of biological electron-transfer reactions. They play important roles in natural protein functions and are implicated in disease states (e.g., oxidative-stress-associated disorders). Tryptophan (Trp) is one such redox-active amino acid residue, and it has long been known to serve a functional role in proteins. Broadly speaking, there is still much to learn about the local features that make some Trp redox active and others inactive. Herein, we describe a new protein model system where we investigate how a methionine (Met) residue proximal to a redox-active Trp affects its reactivity and spectroscopy. We use an artificial variant of azurin from Pseudomonas aeruginosa to produce these models. We employ a series of UV-visible spectroscopy, electrochemistry, electron paramagnetic resonance, and density functional theory experiments to demonstrate the effect that placing Met near Trp radicals has in the context of redox proteins. The introduction of Met proximal to Trp lowers its reduction potential by ca. 30 mV and causes clear shifts in the optical spectra of the corresponding radicals. While the effect may be small, it is significant enough to be a way for natural systems to tune Trp reactivity.

3.
Dalton Trans ; 51(13): 4976-4985, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35253809

RESUMO

The amino acid residue methionine (Met) is commonly thought of as a ligand in redox metalloproteins, for example in cytochromes c and in blue copper proteins. However, the roles of Met can go beyond a simple ligand. The thioether functional group of Met allows it to be considered as a hydrophobic residue as well as one that is capable of weak dipolar interactions. In addition, the lone pairs on sulphur allow Met to interact with other groups, inluding the aforementioned metal ions. Because of its properties, Met can play diverse roles in metal coordination, fine tuning of redox reactions, or supporting protein structures. These roles are strongly influenced by the nature of the surrounding medium. Herein, we describe several common interactions between Met and surrounding aromatic amino acids and how they affect the physical properties of both copper and iron metalloproteins. While the importance of interactions between Met and other groups is established in biological systems, less is known about their roles in redox metalloproteins and our view is that this is an area that is ready for greater attention.


Assuntos
Metaloproteínas , Cobre/química , Metaloproteínas/química , Metionina/química , Modelos Moleculares , Oxirredução
4.
Biomolecules ; 12(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35053154

RESUMO

Short-range, non-covalent interactions between amino acid residues determine protein structures and contribute to protein functions in diverse ways. The interactions of the thioether of methionine with the aromatic rings of tyrosine, tryptophan, and/or phenylalanine has long been discussed and such interactions are favorable on the order of 1-3 kcal mol-1. Here, we carry out a new bioinformatics survey of known protein structures where we assay the propensity of three aromatic residues to localize around the [-CH2-S-CH3] of methionine. We term these groups "3-bridge clusters". A dataset consisting of 33,819 proteins with less than 90% sequence identity was analyzed and such clusters were found in 4093 structures (or 12% of the non-redundant dataset). All sub-classes of enzymes were represented. A 3D coordinate analysis shows that most aromatic groups localize near the CH2 and CH3 of methionine. Quantum chemical calculations support that the 3-bridge clusters involve a network of interactions that involve the Met-S, Met-CH2, Met-CH3, and the π systems of nearby aromatic amino acid residues. Selected examples of proposed functions of 3-bridge clusters are discussed.


Assuntos
Aminoácidos Aromáticos , Metionina , Proteínas , Análise de Sequência de Proteína , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Metionina/química , Metionina/genética , Proteínas/química , Proteínas/genética
5.
Dalton Trans ; 49(21): 7078-7083, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32400805

RESUMO

Electrocatalytic CO2 reduction in water using a series of chlorotricarbonylrhenium(i) diimine complexes deposited on pyrolytic graphite electrodes is described. Two known CO2 reduction catalysts (with diimine = 4,4'-di-tert-butyl-2,2'-bipyridine or 2-(2'-quinolyl)benzimidazole), that are highly active in organic solvent, proved to be only weakly active in water. In contrast, Cl(CO)3Re(L) complexes with tridentate nitrogen-containing ligands (L = 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine or 2,6-bis(2-benzimidazolyl)pyridine) were better CO2 reduction catalysts. In those Cl(CO)3Re(L) complexes, only two N-atoms of the ligand are coordinated to the rhenium, leaving the third arm of the ligands to support activated, CO2-bound intermediates. The 2,6-bis(2-pyridyl)pyridine (terpy) complex was the most active, with substantial activity at alkaline pH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...