Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 80(1): 62-8, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8978323

RESUMO

During static exercise, several reflex systems that increase sympathetic nerve activity, heart rate, arterial pressure, and cardiac output are activated. At rest, the renal circulation receives the most blood flow per tissue weight of any organ in the body. However, the renal circulatory response to static exercise has not been studied in humans because of technical limitations in methods for measuring rapid changes in renal blood flow. The aim of this study was to determine the renal blood flow response to static exercise in healthy humans and, specifically, to clarify the reflex mechanisms underlying this response. Renal cortical blood flow was measured using dynamic positron emission tomography and the blood flow agent oxygen-15 water. Graded handgrip exercise, posthandgrip circulatory arrest, and administration of intra-arterial adenosine were performed to clarify the mechanisms controlling renal blood flow during static exercise. The major new findings in this study are that in healthy humans (1) renal cortical blood flow decreases (basal versus handgrip, 4.4 +/- 0.1 versus 3.5 +/- 0.1 mL.min-1.g-1; P = .008) and renal cortical vascular resistance increases (basal versus handgrip, 17 +/- 1 versus 26 +/- 2 U; P = .01) in response to static handgrip exercise; (2) central command and/or the mechanoreflex contributes importantly to the early decrease in renal blood flow (basal versus handgrip, 4.2 +/- 0.2 versus 3.5 +/- 0.3 mL.min-1.g-1; P = .04) and to the increase in renal cortical vascular resistance (basal versus handgrip, 20 +/- 1 versus 25 +/- 2 U; P = .04); (3) the muscle metaboreflex contributes to further decreases in renal blood flow (basal versus posthandgrip circulatory arrest, 4.3 +/- 0.1 versus 3.5 +/- 0.2 mL.min-1.g-1; P = .002) and increases in renal cortical vascular resistance (basal versus handgrip, 18 +/- 1 versus 25 +/- 3 U; P = .002); and (4) exogenous adenosine activates the muscle metaboreflex producing reflex renal vasoconstriction and decreased renal blood flow, which may implicate endogenous adenosine generated during ischemic exercise as a potential activator of the muscle metaboreflex during ischemic handgrip exercise.


Assuntos
Exercício Físico , Circulação Renal , Adenosina/farmacologia , Adulto , Feminino , Força da Mão , Humanos , Injeções Intra-Arteriais , Masculino , Pessoa de Meia-Idade , Contração Muscular , Circulação Renal/efeitos dos fármacos , Tomografia Computadorizada de Emissão , Resistência Vascular
2.
Circulation ; 92(3): 395-401, 1995 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-7634454

RESUMO

BACKGROUND: The effect of cardiopulmonary baroreflexes on the renal circulation in healthy humans and patients with heart failure is unknown because of the technical limitations of studying the renal circulation. Positron emission tomography (PET) imaging is a new method to measure renal cortical blood flow in humans that is precise, rapid, reproducible, and noninvasive. The purpose of this study was to compare the effect of acute cardiopulmonary baroreceptor unloading by phlebotomy on regional blood flow in healthy humans and humans with advanced heart failure. METHODS AND RESULTS: We compared renal cortical blood flow and forearm blood flow in 10 healthy volunteers and 8 patients with heart failure (left ventricular ejection fraction, 0.24 +/- 0.02) during cardiopulmonary baroreceptor unloading with phlebotomy (450 mL). The major findings of this study are: (1) At rest, renal cortical blood flow is markedly diminished in humans with heart failure compared with healthy humans (heart failure, 2.4 +/- 0.1 versus healthy, 4.3 +/- 0.2 mL.min-1.g-1, P < .001). (2) In healthy humans, during phlebotomy, forearm blood flow decreased substantially (basal, 3.3 +/- 0.4 versus phlebotomy, 2.6 +/- 0.3 mL.min-1.100 mL-1, P = .02) and renal cortical blood flow decreased slightly but significantly (basal, 4.3 +/- 0.2 versus phlebotomy, 4.0 +/- 0.3 mL.min-1.g-1, P = .01). (3) The small magnitude of reflex renal vasoconstriction is not explained by the inability of the renal circulation to vasoconstrict, since the cold pressor stimulus induced substantial decreases in renal cortical blood flow in healthy subjects (basal, 4.4 +/- 0.1 versus cold pressor, 3.7 +/- 0.1 mL.min-1.g-1, P = .003). (4) In humans with heart failure, during phlebotomy, forearm blood flow did not change (basal, 2.6 +/- 0.3 versus phlebotomy, 2.7 +/- 0.2 mL.min-1.100 mL-1, P = NS), but renal cortical blood flow decreased slightly but significantly (basal, 2.4 +/- 0.1 versus phlebotomy, 2.1 +/- 0.1 mL.min-1.g-1, P = .01). (5) The cold pressor stimulus induced substantial decreases in renal cortical blood flow in patients with heart failure (basal, 2.9 +/- 0.1 versus cold pressor, 2.3 +/- 0.1 mL.min-1.g-1, P = .008). Thus, in patients with heart failure, there is an abnormality in cardiopulmonary baroreflex control of the forearm circulation but not the renal circulation. CONCLUSIONS: This study demonstrates the power of PET imaging to study normal physiological and pathophysiological reflex control of the renal circulation in humans and describes the novel finding of selective dysfunction of cardiopulmonary baroreflex control of one vascular region but its preservation in another in patients with heart failure.


Assuntos
Barorreflexo , Insuficiência Cardíaca/fisiopatologia , Córtex Renal/irrigação sanguínea , Circulação Renal , Adulto , Feminino , Coração/fisiopatologia , Humanos , Córtex Renal/fisiopatologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada de Emissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...