Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 9(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352928

RESUMO

This work investigates the molecular interactions within the main triacylglycerols constitutive of palm oil, all having a key role in the multi-step dry fractionation process. Identification of these interactions is possible thanks to the establishment of binary and ternary phase diagrams, using differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD) at variable temperature. The following systems were selected: PPP-POP, PPP-OPP, PPP-POO, POP-OPP, POP-POO, OPP-POO, PPP-POP-POO and PPP-OPP-POO (P: palmitic acid and O: oleic acid), and analyzed in direct mode (heating at 5 °C/min., after melting and quenching at -60 °C), and after tempering for three months at 20 °C (tempered mode). DSC makes it possible to bring out crystallization and melting phenomena associated to polymorphic transitions, which are further characterized (crystalline forms) by XRD. The results show that unsaturated are poorly soluble in fully saturated triacylglycerols, that the intersolubility decreases in proportion to the number of unsaturated fatty acids, that positional isomerism (POP/OPP) has a major impact, that OPP may induce formation of molecular compounds and that co-crystallization properties are highly modified by tempering depending on the polymorphic properties of the systems. This provides a better understanding and allows for effective control of the palm oil dry fractionation process.

2.
J Food Sci ; 85(4): 964-971, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32222051

RESUMO

Oil migration (OM) has been an immense issue in fat-based foods such as peanut butter and chocolate fillings. The objective of this study was to evaluate the effect of high-intensity ultrasound (HIU) on OM in a palm kernel oil-based fat used in chocolate fillings, coatings, and confectionery applications. The sample was crystallized at 30 °C for 90 min and stored for 48 hr at 25 °C. HIU was applied after 20 min at 30 °C using a 3.2-mm diameter tip operating at an amplitude of 216 µm (90 W) for 10 s. OM was measured using a centrifuge- and a filter paper-based method. Crystal morphology and size, solid fat content (SFC), melting behavior, and hardness were evaluated after 90 min, 48 hr, and after OM. Results showed that HIU reduced OM (P < 0.05) by 52.0% when measured using the filter paper method while a reduction of 97.4% was observed when measured with the centrifuge method. HIU also reduced the crystal size (P < 0.05) and formed a more organized crystalline network. A reduction in peak temperature (Tp ) after 90 min of crystallization and 48 hr of storage was observed in sonicated samples without affecting the enthalpy. However, enthalpy and Tp were higher in the sample without HIU analyzed after OM due to the migration of low melting point triacylglycerols out of the crystalline network. HIU also increased the hardness (P < 0.05) from 1.37 N and 3.17 N. But no differences (P > 0.05) were found on SFC due to sonication. Overall, HIU changed the crystalline structure of the fat allowing for a better entrapment of liquid oil in the crystalline matrix. Results from this study will benefit food producers that are looking for fat sources with better capacity to entrap oil. PRACTICAL APPLICATION: OM is one of the main problems facing the fat industry, especially since the elimination of partially hydrogenated fats from foods. Efforts are being focused on finding new technologies to reduce OM and therefore to improve the shelf life of the product. This study introduces for the first time, a new processing technology to reduce OM in a palm kernel fat with high content of saturated fatty acids that is commonly used in confectionery applications.


Assuntos
Manipulação de Alimentos/métodos , Óleo de Palmeira/química , Sonicação/métodos , Cristalização , Gorduras/química , Ácidos Graxos/química , Dureza , Cinética , Sementes/química , Temperatura , Triglicerídeos/química
3.
J Food Sci ; 83(4): 902-910, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29476626

RESUMO

The aim of this study was to investigate the effects of supercooling and degree of saturation on lipid sonocrystallization under similar driving force of crystallization. Samples consisting of 100%, 50%, and 20% interesterified soybean oil (IESBO) diluted in high-oleic sunflower oil (HOSFO) were crystallized with and without high-intensity ultrasound (HIU). Two power levels were used by changing the amplitude of vibration of the tip (24 µm and 108 µm of tip amplitude). HIU operating at a frequency of 20 kHz was applied for 10 s. Sonication induced crystallization in the 100% IESBO sample and sonication power did not affect the results. A greater induction in crystallization was observed when higher power levels were used in the 50% IESBO sample, while no effect was observed in the crystallization kinetics of the 20% IESBO samples. Changes in the crystallization kinetics affected physical properties of the material, influencing elasticity. For example, sonication increased the elasticity of the 100% IESBO sample for both tip amplitudes from 435.9 ± 173.3 Pa to 72735.0 ± 9547.9 Pa for the nonsonicated and sonicated samples using 108 µm of amplitude, respectively. However, sonication only increased the elasticity in the 50% sample when used at the higher power level of 108 µm from 564.2 ± 175.2 Pa to 21774.0 ± 5694.9 Pa, and it did not affect the elasticity of the 20% IESBO samples. These results show that the level of saturation and the degree of supercooling affect sonication efficiency. PRACTICAL APPLICATIONS: High-intensity ultrasound (HIU) has been used as a novel method for changing the crystallization behavior of fats. HIU can be used to improve the physical properties of trans-free fats that are low in saturated fatty acids. Although recent studies have proven the effectiveness of this method to induce crystallization, the process must still be optimized to the industrial setting. All process parameters should be considered during the application of HIU, as they directly affect the final product. The aim of this paper was to investigate the effects of HIU and process conditions such as tip amplitude, degree of supercooling, and saturation level on the crystallization behavior of commercial interesterified soybean oil.


Assuntos
Temperatura Baixa , Ácidos Graxos/análise , Sonicação/métodos , Óleo de Soja/química , Cristalização , Elasticidade , Esterificação , Gorduras/química , Gorduras/efeitos da radiação , Humanos , Cinética , Óleo de Soja/efeitos da radiação , Ácidos Graxos trans , Ondas Ultrassônicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...