Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Diabetes ; 4(3): e12936, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31313657

RESUMO

BACKGROUND: Although multiple self-monitoring technologies for type 2 diabetes mellitus (T2DM) show promise for improving T2DM self-care behaviors and clinical outcomes, they have been understudied in Hispanic adult populations who suffer disproportionately from T2DM. OBJECTIVE: The objective of this study was to evaluate the acceptability, feasibility, and potential integration of wearable sensors for diabetes self-monitoring among Hispanic adults with self-reported T2DM. METHODS: We conducted a pilot study of T2DM self-monitoring technologies among Hispanic adults with self-reported T2DM. Participants (n=21) received a real-time continuous glucose monitor (RT-CGM), a wrist-worn physical activity (PA) tracker, and a tablet-based digital food diary to self-monitor blood glucose, PA, and food intake, respectively, for 1 week. The RT-CGM captured viewable blood glucose concentration (mg/dL) and PA trackers collected accelerometer-based data, viewable on the device or an associated tablet app. After 1 week of use, we conducted a semistructured interview with each participant to understand experiences and thoughts on integration of the data from the devices into a technology-facilitated T2DM self-management intervention. We also conducted a brief written questionnaire to understand participants' self-reported T2DM history and past experience using digital health tools for T2DM self-management. Feasibility was measured by device utilization and objective RT-CGM, PA tracker, and diet logging data. Acceptability and potential integration were evaluated through thematic analysis of verbatim interview transcripts. RESULTS: Participants (n=21, 76% female, 50.4 [SD 11] years) had a mean self-reported hemoglobin A1c of 7.4 [SD 1.8] mg/dL and had been diagnosed with T2DM for 7.4 [SD 5.2] years (range: 1-16 years). Most (89%) were treated with oral medications, whereas the others self-managed through diet and exercise. Nearly all participants (n=20) used both the RT-CGM and PA tracker, and 52% (11/21) logged at least one meal, with 33% (7/21) logging meals for 4 or more days. Of the 8 possible days, PA data were recorded for 7.1 [SD 1.8] days (range: 2-8), and participants averaged 7822 [SD 3984] steps per day. Interview transcripts revealed that participants felt most positive about the RT-CGM as it unveiled previously unknown relationships between lifestyle and health and contributed to changes in T2DM-related thoughts and behaviors. Participants felt generally positive about incorporating the wearable sensors and mobile apps into a future intervention if support were provided by a health coach or health care provider, device training were provided, apps were tailored to their language and culture, and content were both actionable and delivered on a single platform. CONCLUSIONS: Sensor-based tools for facilitating T2DM self-monitoring appear to be a feasible and acceptable technology among low-income Hispanic adults. We identified barriers to acceptability and highlighted preferences for wearable sensor integration in a community-based intervention. These findings have implications for the design of T2DM interventions targeting Hispanic adults.

2.
Diabetol Metab Syndr ; 5(1): 33, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23816355

RESUMO

BACKGROUND: Our purpose was to develop and test a predictive model of the acute glucose response to exercise in individuals with type 2 diabetes. DESIGN AND METHODS: Data from three previous exercise studies (56 subjects, 488 exercise sessions) were combined and used as a development dataset. A mixed-effects Least Absolute Shrinkage Selection Operator (LASSO) was used to select predictors among 12 potential predictors. Tests of the relative importance of each predictor were conducted using the Lindemann Merenda and Gold (LMG) algorithm. Model structure was tested using likelihood ratio tests. Model accuracy in the development dataset was assessed by leave-one-out cross-validation.Prospectively captured data (47 individuals, 436 sessions) was used as a test dataset. Model accuracy was calculated as the percentage of predictions within measurement error. Overall model utility was assessed as the number of subjects with ≤1 model error after the third exercise session. Model accuracy across individuals was assessed graphically. In a post-hoc analysis, a mixed-effects logistic regression tested the association of individuals' attributes with model error. RESULTS: Minutes since eating, a non-linear transformation of minutes since eating, post-prandial state, hemoglobin A1c, sulfonylurea status, age, and exercise session number were identified as novel predictors. Minutes since eating, its transformations, and hemoglobin A1c combined to account for 19.6% of the variance in glucose response. Sulfonylurea status, age, and exercise session each accounted for <1.0% of the variance. In the development dataset, a model with random slopes for pre-exercise glucose improved fit over a model with random intercepts only (likelihood ratio 34.5, p < 0.001). Cross-validated model accuracy was 83.3%.In the test dataset, overall accuracy was 80.2%. The model was more accurate in pre-prandial than postprandial exercise (83.6% vs. 74.5% accuracy respectively). 31/47 subjects had ≤1 model error after the third exercise session. Model error varied across individuals and was weakly associated with within-subject variability in pre-exercise glucose (Odds ratio 1.49, 95% Confidence interval 1.23-1.75). CONCLUSIONS: The preliminary development and test of a predictive model of acute glucose response to exercise is presented. Further work to improve this model is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...