Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503299

RESUMO

Background: Impaired left ventricular relaxation, high filling pressures, and dysregulation of Ca 2+ homeostasis are common findings contributing to diastolic dysfunction in hypertrophic cardiomyopathy (HCM). Studies have shown that impaired relaxation is an early observation in the sarcomere-gene-positive preclinical HCM cohort which suggests potential involvement of myofilament regulators of relaxation. Yet, a molecular level understanding of mechanism(s) at the level of the myofilament is lacking. We hypothesized that mutation-specific, allosterically mediated, changes to the cardiac troponin C-cardiac troponin I (cTnC-cTnI) interface can account for the development of early-onset diastolic dysfunction via decreased PKA accessibility to cTnI. Methods: HCM mutations R92L-cTnT (Arg92Leu) and Δ160E-cTnT (Glu160 deletion) were studied in vivo , in vitro, and in silico via 2D echocardiography, western blotting, ex vivo hemodynamics, stopped-flow kinetics, time resolved fluorescence resonance energy transfer (TR-FRET), and molecular dynamics simulations. Results: The HCM-causative mutations R92L-cTnT and Δ160E-cTnT result in different time-of-onset of diastolic dysfunction. R92L-cTnT demonstrated early-onset diastolic dysfunction accompanied by a localized decrease in phosphorylation of cTnI. Constitutive phosphorylation of cTnI (cTnI-D 23 D 24 ) was sufficient to recover diastolic function to Non-Tg levels only for R92L-cTnT. Mutation-specific changes in Ca 2+ dissociation rates associated with R92L-cTnT reconstituted with cTnI-D 23 D 24 led us to investigate potential involvement of structural changes in the cTnC-cTnI interface as an explanation for these observations. We probed the interface via TR-FRET revealing a repositioning of the N-terminus of cTnI, closer to cTnC, and concomitant decreases in distance distributions at sites flanking the PKA consensus sequence. Implementing TR-FRET distances as constraints into our atomistic model identified additional electrostatic interactions at the consensus sequence. Conclusion: These data indicate that the early diastolic dysfunction observed in a subset of HCM is likely attributable to structural changes at the cTnC-cTnI interface that impair accessibility of PKA thereby blunting ß-adrenergic responsiveness and identifying a potential molecular target for therapeutic intervention.

2.
Am J Physiol Cell Physiol ; 321(2): C247-C256, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34106785

RESUMO

The islets of Langerhans of the pancreas are the primary endocrine organ responsible for regulating whole body glucose homeostasis. The use of isolated primary islets for research development and training requires organ resection, careful digestion, and isolation of the islets from nonendocrine tissue. This process is time consuming, expensive, and requires substantial expertise. For these reasons, we sought to develop a more rapidly obtainable and consistent model system with characteristic islet morphology and function that could be employed to train personnel and better inform experiments prior to using isolated rodent and human islets. Immortalized ß cell lines reflect several aspects of primary ß cells, but cell propagation in monolayer cell culture limits their usefulness in several areas of research, which depend on islet morphology and/or functional assessment. In this manuscript, we describe the propagation and characterization of insulinoma pseudo-islets (IPIs) from a rat insulinoma cell line INS832/3. IPIs were generated with an average diameter of 200 µm, consistent with general islet morphology. The rates of oxygen consumption and mitochondrial oxidation-reduction changes in response to glucose and metabolic modulators were similar to isolated rat islets. In addition, the dynamic insulin secretory patterns of IPIs were similar to primary rat islets. Thus, INS832/3-derived IPIs provide a valuable and convenient model for accelerating islet and diabetes research.


Assuntos
Diabetes Mellitus/metabolismo , Insulinoma/metabolismo , Ilhotas Pancreáticas/metabolismo , Pâncreas/metabolismo , Animais , Linhagem Celular , Glucose/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Consumo de Oxigênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...