Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5289, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075935

RESUMO

Light harvesting is fundamental for production of ATP and reducing equivalents for CO2 fixation during photosynthesis. However, electronic energy transfer (EET) through a photosystem can harm the photosynthetic apparatus when not balanced with CO2. Here, we show that CO2 binding to the light-harvesting complex modulates EET in photosynthetic cyanobacteria. More specifically, CO2 binding to the allophycocyanin alpha subunit of the light-harvesting complex regulates EET and its fluorescence quantum yield in the cyanobacterium Synechocystis sp. PCC 6803. CO2 binding decreases the inter-chromophore distance in the allophycocyanin trimer. The result is enhanced EET in vitro and in live cells. Our work identifies a direct target for CO2 in the cyanobacterial light-harvesting apparatus and provides insights into photosynthesis regulation.


Assuntos
Ficobilissomas , Synechocystis , Dióxido de Carbono/metabolismo , Fotossíntese , Ficobilissomas/metabolismo , Ficocianina , Receptores de Superfície Celular , Synechocystis/metabolismo
2.
Microbiology (Reading) ; 168(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748615

RESUMO

One-third of the world's population is estimated to be latently infected with Mycobacterium tuberculosis. This reservoir of bacteria is largely resistant to antimicrobial treatment that often only targets actively replicating mycobacteria, with current treatment for latent infection revolving around inhibiting the resuscitation event rather than preventing or treating latent infection. As a result, antimicrobials that target latent infection often have little to no activity in vivo. Here we report a method of in vitro analysis of physiologically relevant non-replicating persistence (NRP) utilizing cholesterol as the sole carbon source, alongside hypoxia as a driver of Mycobacterium bovis BCG into the NRP state. Using the minimal cholesterol media NRP assay, we observed an increased state of in vitro resistance to front-line anti-tubercular compounds. However, following a phenotypic screen of an approved-drug library, we identified dapsone as a bactericidal active molecule against cholesterol-dependent NRP M. bovis BCG. Through an overexpression trial of probable antimicrobial target enzymes, we further identified FolP2, a non-functional dihydropteroate synthase homologue, as the likely target of dapsone under cholesterol-NRP due to a significant increase in bacterial resistance when overexpressed. These results highlight the possible reason for little in vivo activity seen for current front-line anti-NRP drugs, and we introduce a new methodology for future drug screening as well as a potential role for dapsone inclusion within the current treatment regime.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Dapsona , Vacina BCG , Mycobacterium tuberculosis/genética , Antibacterianos/farmacologia , Mycobacterium bovis/genética , Antituberculosos/farmacologia
3.
Methods Mol Biol ; 2314: 247-260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235656

RESUMO

Non-replicating persistence (NRP) is a functional adaptation that mycobacteria undergo in response to the stresses of the granuloma, facilitating antibiotic tolerance and long-term infection. These stresses, or NRP-inducing factors, include hypoxia, nutrient deprivation, and nitric oxide assault, which mycobacteria are well evolved to tolerate through a series of metabolic and physiological adaptations producing the NRP state. Most attempts to replicate these conditions in vitro have focused on only one of these factors at a time for ease and simplicity, but as a result, do not necessarily produce physiologically relevant phenotypes. Here, we provide the methods for two different in vitro NRP strategies that are useful for drug susceptibility testing and high-throughput screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Hipóxia/fisiopatologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Nutrientes/metabolismo , Oxigênio/metabolismo , Preparações Farmacêuticas/administração & dosagem , Estresse Fisiológico , Humanos , Técnicas In Vitro , Mycobacterium tuberculosis/efeitos dos fármacos
4.
Biochem Biophys Res Commun ; 563: 79-84, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34062390

RESUMO

Junctophilin-2 (JPH2) was conventionally considered as a structural membrane binding protein. Recently, it was shown that proteolytically truncated mouse JPH2 variants are imported into nucleus to exert alternative functions. However, the intranuclear behaviors of human JPH2 (hJPH2) and underlying molecular determinants have not been explored. Here, we demonstrate that full-length hJPH2 is imported into nucleus in human cells by two nuclear localization signals (NLSs), including a newly discovered one at the C-terminus. Importantly, unlike the JPH2 N-terminal truncation which diffuses throughout the nucleus, full-length hJPH2 forms nuclear bodies behaving like liquid-liquid phase separated droplets that are separated from chromatin. The C-terminal transmembrane domain is required for the formation of hJPH2 droplets. Oxidation mimicking substitution of residues C678 and M679 augments the formation of hJPH2 nuclear droplets, suggesting nuclear hJPH2 liquid-liquid phase separation could be modulated by oxidative stress. Mutation A405D, which introduces a negatively charged residue into an intrinsic disordered region (IDR) of hJPH2, turns liquid-like droplets into amyloid-like aggregates. Depletion of an Alanine Rich Region in the IDR recapitulates the liquid-amyloid phase transition. The MORN repeat regions of hJPH2 encodes intrinsic tendency to form amyloid-like structure. Together, these data revealed the novel intrinsic properties of hJPH2 to form nuclear liquid droplets, and identified critical functional domains encoding these properties. We propose that hJPH2 droplets could function as membrane-less organelles participating in nuclear regulatory processes.


Assuntos
Núcleo Celular/química , Proteínas de Membrana/genética , Proteínas Musculares/genética , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Clonagem Molecular , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Tamanho da Partícula , Alinhamento de Sequência , Células Tumorais Cultivadas
5.
Pathogens ; 7(4)2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445695

RESUMO

Tuberculosis (TB) is the primary cause of death by a single infectious agent; responsible for around two million deaths in 2016. A major virulence factor of TB is the ability to enter a latent or Non-Replicating Persistent (NRP) state which is presumed untreatable. Approximately 1.7 billion people are latently infected with TB and on reactivation many of these infections are drug resistant. As the current treatment is ineffective and diagnosis remains poor, millions of people have the potential to reactivate into active TB disease. The immune system seeks to control the TB infection by containing the bacteria in a granuloma, where it is exposed to stressful anaerobic and nutrient deprived conditions. It is thought to be these environmental conditions that trigger the NRP state. A number of in vitro models have been developed that mimic conditions within the granuloma to a lesser or greater extent. These different models have all been utilised for the research of different characteristics of NRP Mycobacterium tuberculosis, however their disparity in approach and physiological relevance often results in inconsistencies and a lack of consensus between studies. This review provides a summation of the different NRP models and a critical analysis of their respective advantages and disadvantages relating to their physiological relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...