Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 103(5): 1214-1220, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37340632

RESUMO

Technological advances have enabled the expansion of ocean exploration to include the deep ocean, providing new species observations. Here, the authors present two new observations, captured by deep-sea cameras, of the sleeper shark Somniosus cf. pacificus from the Solomon Islands and Palau. This presents the first observation of S. cf. pacificus in the western Pacific tropics and extends its range about 2000 nautical miles south. The observations presented here provide much-needed information on the range of this species which can help guide future management and conservation actions.


Assuntos
Cação (Peixe) , Tubarões , Animais , Filogenia , Melanesia , Oceano Pacífico
2.
PLoS One ; 17(7): e0270930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802686

RESUMO

Our changing climate poses growing challenges for effective management of marine life, ocean ecosystems, and human communities. Which species are most vulnerable to climate change, and where should management focus efforts to reduce these risks? To address these questions, the National Oceanic and Atmospheric Administration (NOAA) Fisheries Climate Science Strategy called for vulnerability assessments in each of NOAA's ocean regions. The Pacific Islands Vulnerability Assessment (PIVA) project assessed the susceptibility of 83 marine species to the impacts of climate change projected to 2055. In a standard Rapid Vulnerability Assessment framework, this project applied expert knowledge, literature review, and climate projection models to synthesize the best available science towards answering these questions. Here we: (1) provide a relative climate vulnerability ranking across species; (2) identify key attributes and factors that drive vulnerability; and (3) identify critical data gaps in understanding climate change impacts to marine life. The invertebrate group was ranked most vulnerable and pelagic and coastal groups not associated with coral reefs were ranked least vulnerable. Sea surface temperature, ocean acidification, and oxygen concentration were the main exposure drivers of vulnerability. Early Life History Survival and Settlement Requirements was the most data deficient of the sensitivity attributes considered in the assessment. The sensitivity of many coral reef fishes ranged between Low and Moderate, which is likely underestimated given that reef species depend on a biogenic habitat that is extremely threatened by climate change. The standard assessment methodology originally developed in the Northeast US, did not capture the additional complexity of the Pacific region, such as the diversity, varied horizontal and vertical distributions, extent of coral reef habitats, the degree of dependence on vulnerable habitat, and wide range of taxa, including data-poor species. Within these limitations, this project identified research needs to sustain marine life in a changing climate.


Assuntos
Mudança Climática , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Recifes de Corais , Concentração de Íons de Hidrogênio , Ilhas do Pacífico , Água do Mar
3.
PLoS One ; 16(6): e0253213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191822

RESUMO

The Salas y Gómez and Nazca ridges are underwater mountain chains that stretch across 2,900 km in the southeastern Pacific and are recognized for their high biodiversity value and unique ecological characteristics. Explorations of deep-water ecosystems have been limited in this region, and elsewhere globally. To characterize community composition of mesophotic and deep-sea demersal fauna at seamounts in the region, we conducted expeditions to Rapa Nui (RN) and Salas y Gómez (SyG) islands in 2011 and Desventuradas Islands in 2013. Remote autonomous baited-cameras were used to conduct stationary video surveys between 150-1,850 m at RN/SyG (N = 20) and 75-2,363 m at Desventuradas (N = 27). Individual organisms were identified to the lowest possible taxonomic level and relative abundance was quantified with the maximum number of individuals per frame. Deployments were attributed with associated environmental variables (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate, chlorophyll-a, seamount age, and bathymetric position index [BPI]). We identified 55 unique invertebrate taxa and 66 unique fish taxa. Faunal community structure was highly dissimilar between and within subregions both for invertebrate (p < 0.001) and fish taxa (p = 0.022). For fishes, dogfish sharks (Squalidae) accounted for the greatest dissimilarity between subregions (18.27%), with mean abundances of 2.26 ± 2.49 at Desventuradas, an order of magnitude greater than at RN/SyG (0.21 ± 0.54). Depth, seamount age, broad-scale BPI, and nitrate explained most of the variation in both invertebrate (R2 = 0.475) and fish (R2 = 0.419) assemblages. Slightly more than half the deployments at Desventuradas (N = 14) recorded vulnerable marine ecosystem taxa such as corals and sponges. Our study supports mounting evidence that the Salas y Gómez and Nazca ridges are areas of high biodiversity and high conservation value. While Chile and Peru have recently established or proposed marine protected areas in this region, the majority of these ridges lie outside of national jurisdictions and are under threat from overfishing, plastic pollution, climate change, and potential deep-sea mining. Given its intrinsic value, this region should be comprehensively protected using the best available conservation measures to ensure that the Salas y Gómez and Nazca ridges remain a globally unique biodiversity hotspot.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Peixes/fisiologia , Invertebrados/fisiologia , Distribuição Animal , Animais , Chile , Monitorização de Parâmetros Ecológicos/métodos , Ilhas , Oceano Pacífico , Peru , Gravação em Vídeo
4.
J Fish Biol ; 97(3): 926-929, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32592495

RESUMO

This study reports the first records of cowsharks (Hexanchidae) in the Galápagos Islands, in particular Notorynchus cepedianus and Hexanchus griseus, observed between depths of 210 and 418 m on footage from free-falling autonomous deep-ocean cameras. These sightings provide new information on the habitat preferences and range distribution for N. cepedianus and the first records of H. griseus in Ecuadorian waters. The findings support the formulation of regional conservation strategies for these large apex predator species and highlight the limited biological knowledge of Galápagos' deep-water ecosystems.


Assuntos
Ecossistema , Tubarões/fisiologia , Animais , Conservação dos Recursos Naturais , Equador , Oceano Pacífico , Tubarões/classificação
5.
PeerJ ; 7: e7279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341739

RESUMO

Clipperton Atoll (Île de La Passion) is the only atoll in the Tropical Eastern Pacific (TEP) ecoregion and, owing to its isolation, possesses several endemic species and is likely an important stepping stone between Oceania, the remainder of the TEP, including other oceanic islands and the west coast of Central America. We describe the biodiversity at this remote atoll from shallow water to depths greater than one thousand meters using a mixture of technologies (SCUBA, stereo baited remote underwater video stations, manned submersible, and deep-sea drop cameras). Seventy-four unique taxa of invertebrates were identified during our expedition. The majority (70%) of these taxa were confined to the top 400 m and consisted mostly of sessile organisms. Decapod crustaceans and black corals (Antipatharia) had the broadest depth ranges, 100-1,497 m and 58-967 m, respectively. Decapods were correlated with the deepest depths, while hard corals were correlated with the shallow depths. There were 96 different fish taxa from 41 families and 15 orders, of which 70% were restricted to depths <200 m. While there was a decreasing trend in richness for both fish and invertebrate taxa with depth, these declines were not linear across the depth gradient. Instead, peaks in richness at ∼200 m and ∼750 m coincided with high turnover due to the appearance of new taxa and disappearance of other taxa within the community and is likely associated with the strong oxygen minimum zone that occurs within the region. The overall depth effect was stronger for fishes compared with invertebrates, which may reflect ecological preferences or differences in taxonomic resolution among groups. The creation of a no-take marine reserve 12 nautical miles around the atoll in 2016 will help conserve this unique and relatively intact ecosystem, which possesses high predator abundance.

6.
Ecol Appl ; 29(4): e01891, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31021497

RESUMO

Declining natural resources have contributed to a cultural renaissance across the Pacific that seeks to revive customary ridge-to-reef management approaches to protect freshwater and restore abundant coral reef fisheries. We applied a linked land-sea modeling framework based on remote sensing and empirical data, which couples groundwater nutrient export and coral reef models at fine spatial resolution. This spatially explicit (60 × 60 m) framework simultaneously tracks changes in multiple benthic and fish indicators as a function of community-led marine closures, land-use and climate change scenarios. We applied this framework in Ha'ena and Ka'upulehu, located at opposite ends of the Hawaiian Archipelago to investigate the effects of coastal development and marine closures on coral reefs in the face of climate change. Our results indicated that projected coastal development and bleaching can result in a significant decrease in benthic habitat quality and community-led marine closures can result in a significant increase in fish biomass. In general, Ka'upulehu is more vulnerable to land-based nutrients and coral bleaching than Ha'ena due to high coral cover and limited dilution and mixing from low rainfall and wave power, except for the shallow and wave-sheltered back-reef areas of Ha'ena, which support high coral cover and act as nursery habitat for fishes. By coupling spatially explicit land-sea models with scenario planning, we identified priority areas on land where upgrading cesspools can reduce human impacts on coral reefs in the face of projected climate change impacts.


Assuntos
Antozoários , Recifes de Corais , Animais , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Havaí , Humanos
7.
PLoS One ; 13(1): e0189930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29364902

RESUMO

The vast and complex coast of the Magellan Region of extreme southern Chile possesses a diversity of habitats including fjords, deep channels, and extensive kelp forests, with a unique mix of temperate and sub-Antarctic species. The Cape Horn and Diego Ramírez archipelagos are the most southerly locations in the Americas, with the southernmost kelp forests, and some of the least explored places on earth. The giant kelp Macrocystis pyrifera plays a key role in structuring the ecological communities of the entire region, with the large brown seaweed Lessonia spp. forming dense understories. Kelp densities were highest around Cape Horn, followed by Diego Ramírez, and lowest within the fjord region of Francisco Coloane Marine Park (mean canopy densities of 2.51 kg m-2, 2.29 kg m-2, and 2.14 kg m-2, respectively). There were clear differences in marine communities among these sub-regions, with the lowest diversity in the fjords. We observed 18 species of nearshore fishes, with average species richness nearly 50% higher at Diego Ramírez compared with Cape Horn and Francisco Coloane. The number of individual fishes was nearly 10 times higher at Diego Ramírez and 4 times higher at Cape Horn compared with the fjords. Dropcam surveys of mesophotic depths (53-105 m) identified 30 taxa from 25 families, 15 classes, and 7 phyla. While much of these deeper habitats consisted of soft sediment and cobble, in rocky habitats, echinoderms, mollusks, bryozoans, and sponges were common. The southern hagfish (Myxine australis) was the most frequently encountered of the deep-sea fishes (50% of deployments), and while the Fueguian sprat (Sprattus fuegensis) was the most abundant fish species, its distribution was patchy. The Cape Horn and Diego Ramírez archipelagos represent some of the last intact sub-Antarctic ecosystems remaining and a recently declared large protected area will help ensure the health of this unique region.


Assuntos
Biodiversidade , Biologia Marinha , Animais , Chile , Ecossistema , Peixes , Kelp
8.
PeerJ ; 5: e4089, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29226033

RESUMO

Sustainable fisheries management is key to restoring and maintaining ecological function and benefits to people, but it requires accurate information about patterns of resource use, particularly fishing pressure. In most coral reef fisheries and other data-poor contexts, obtaining such information is challenging and remains an impediment to effective management. We developed the most comprehensive regional view of shore-based fishing effort and catch published to date, to show detailed fishing patterns from across the main Hawaiian Islands (MHI). We reveal these regional patterns through fisher "creel" surveys conducted by local communities, state agencies, academics, and/or environmental organizations, at 18 sites, comprising >10,000 h of monitoring across a range of habitats and human influences throughout the MHI. All creel surveys included in this study except for one were previously published in some form (peer-reviewed articles or gray literature reports). Here, we synthesize these studies to document spatial patterns in nearshore fisheries catch, effort, catch rates (i.e., catch-per-unit-effort (CPUE)), and catch disposition (i.e., use of fish after catch is landed). This effort provides for a description of general regional patterns based on these location-specific studies. Line fishing was by far the dominant gear type employed. The most efficient gear (i.e., highest CPUE) was spear (0.64 kg h-1), followed closely by net (0.61 kg h-1), with CPUE for line (0.16 kg h-1) substantially lower than the other two methods. Creel surveys also documented illegal fishing activity across the studied locations, although these activities were not consistent across sites. Overall, most of the catch was not sold, but rather retained for home consumption or given away to extended family, which suggests that cultural practices and food security may be stronger drivers of fishing effort than commercial exploitation for coral reef fisheries in Hawai'i. Increased monitoring of spatial patterns in nearshore fisheries can inform targeted management, and can help communities develop a more informed understanding of the drivers of marine resource harvest and the state of the resources, in order to maintain these fisheries for food security, cultural practices, and ecological value.

9.
PLoS One ; 11(5): e0155221, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171404

RESUMO

In 2007, due to growing concerns of declines in nearshore fisheries in Hawai'i, a ban on gillnets was implemented in designated areas around the island of O'ahu in the main Hawaiian Islands. Utilizing a 17 year time-series of juvenile fish abundance beginning prior to the implementation of the gillnet ban, we examined the effects of the ban on the abundance of juveniles of soft-bottom associated fish species. Using a Before-After-Control-Impact (BACI) sampling design, we compared the abundance of targeted fishery species in a bay where gillnet fishing was banned (Kailua, O'ahu), and an adjacent bay where fishing is still permitted (Waimanalo, O'ahu). Our results show that when multiple juvenile fish species were combined, abundance declined over time in both locations, but the pattern varied for each of the four species groups examined. Bonefishes were the only species group with a significant BACI effect, with higher abundance in Kailua in the period after the gillnet ban. This study addressed a need for scientific assessment of a fisheries regulation that is rarely possible due to lack of quality data before enactment of such restrictions. Thus, we developed a baseline status of juveniles of an important fishery species, and found effects of a fishery management regulation in Hawai'i.


Assuntos
Ecossistema , Pesqueiros , Peixes/fisiologia , Animais , Conservação dos Recursos Naturais , Geografia , Havaí , Modelos Lineares , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...