Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 342: 113719, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33839144

RESUMO

The generation of neural stem and progenitor cells following injury is critical for the function of the central nervous system, but the molecular mechanisms modulating this response remain largely unknown. We have previously identified the G protein-coupled receptor 37 (GPR37) as a modulator of ischemic damage in a mouse model of stroke. Here we demonstrate that GPR37 functions as a critical negative regulator of progenitor cell dynamics and gliosis following ischemic injury. In the central nervous system, GPR37 is enriched in mature oligodendrocytes, but following injury we have found that its expression is dramatically increased within a population of Sox2-positive progenitor cells. Moreover, the genetic deletion of GPR37 did not alter the number of mature oligodendrocytes following injury but did markedly increase the number of both progenitor cells and injury-induced Olig2-expressing glia. Alterations in the glial environment were further evidenced by the decreased activation of oligodendrocyte precursor cells. These data reveal that GPR37 regulates the response of progenitor cells to ischemic injury and provides new perspectives into the potential for manipulating endogenous progenitor cells following stroke.


Assuntos
Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , AVC Isquêmico/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Células-Tronco/metabolismo , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , AVC Isquêmico/patologia , AVC Isquêmico/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Células-Tronco/patologia
2.
J Proteome Res ; 19(2): 744-755, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31903766

RESUMO

GPR37 and GPR37L1 are glia-enriched G protein-coupled receptors that have been implicated in several neurological and neurodegenerative diseases. To gain insight into the potential molecular mechanisms by which GPR37 and GPR37L1 regulate cellular physiology, proteomic analyses of whole mouse brain tissue from wild-type (WT) versus GPR37/GPR37L1 double knockout (DKO) mice were performed in order to identify proteins regulated by the absence versus presence of these receptors (data are available via ProteomeXchange with identifier PXD015202). These analyses revealed a number of proteins that were significantly increased or decreased by the absence of GPR37 and GPR37L1. One of the most decreased proteins in the DKO versus WT brain tissue was S100A5, a calcium-binding protein, and the reduction of S100A5 expression in KO brain tissue was validated via Western blot. Coexpression of S100A5 with either GPR37 or GPR37L1 in HEK293T cells did not result in any change in S100A5 expression but did robustly increase secretion of S100A5. To dissect the mechanism by which S100A5 secretion was enhanced, cells coexpressing S100A5 with the receptors were treated with different pharmacological reagents. These studies revealed that calcium is essential for the secretion of S100A5 downstream of GPR37 and GPR37L1 signaling, as treatment with BAPTA-AM, an intracellular Ca2+ chelator, reduced S100A5 secretion from transfected HEK293T cells. Collectively, these findings provide a panoramic view of proteomic changes resulting from loss of GPR37 and GPR37L1 and also impart mechanistic insight into the regulation of S100A5 by these receptors, thereby shedding light on the functions of GPR37 and GPR37L1 in brain tissue.


Assuntos
Proteômica , Receptores Acoplados a Proteínas G , Animais , Encéfalo/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
3.
FASEB J ; 33(10): 10680-10691, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31268736

RESUMO

GPCR 37 (GPR37) is a GPCR expressed in the CNS; its physiological and pathophysiological functions are largely unknown. We tested the role of GPR37 in the ischemic brain of GPR37 knockout (KO) mice, exploring the idea that GPR37 might be protective against ischemic damage. In an ischemic stroke model, GPR37 KO mice exhibited increased infarction and cell death compared with wild-type (WT) mice, measured by 2,3,5-triphenyl-2H-tetrazolium chloride and TUNEL staining 24 h after stroke. Moreover, more severe functional deficits were detected in GPR37 KO mice in the adhesive-removal and corner tests. In the peri-infarct region of GPR37 KO mice, there was significantly more apoptotic and autophagic cell death accompanied by caspase-3 activation and attenuated mechanistic target of rapamycin signaling. GPR37 deletion attenuated astrocyte activation and astrogliosis compared with WT stroke controls 24-72 h after stroke. Immunohistochemical staining showed more ionized calcium-binding adapter molecule 1-positive cells in the ischemic cortex of GPR37 KO mice, and RT-PCR identified an enrichment of M1-type microglia or macrophage markers in the GPR37 KO ischemic cortex. Western blotting demonstrated higher levels of inflammatory factors IL-1ß, IL-6, monocyte chemoattractant protein, and macrophage inflammatory protein-1α in GPR37-KO mice after ischemia. Thus, GPR37 plays a multifaceted role after stroke, suggesting a novel target for stroke therapy.-McCrary, M. R., Jiang, M. Q., Giddens, M. M., Zhang, J. Y., Owino, S., Wei, Z. Z., Zhong, W., Gu, X., Xin, H., Hall, R. A., Wei, L., Yu, S. P. Protective effects of GPR37 via regulation of inflammation and multiple cell death pathways after ischemic stroke in mice.


Assuntos
Isquemia Encefálica/fisiopatologia , Morte Celular/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Apoptose , Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Caspase 3/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Córtex Sensório-Motor/fisiopatologia , Transdução de Sinais , Acidente Vascular Cerebral/patologia , Serina-Treonina Quinases TOR/metabolismo
4.
Neurobiol Dis ; 106: 181-190, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688853

RESUMO

Progressive myoclonus epilepsies (PMEs) are disorders characterized by myoclonic and generalized seizures with progressive neurological deterioration. While several genetic causes for PMEs have been identified, the underlying causes remain unknown for a substantial portion of cases. Here we describe several affected individuals from a large, consanguineous family presenting with a novel PME in which symptoms begin in adolescence and result in death by early adulthood. Whole exome analyses revealed that affected individuals have a homozygous variant in GPR37L1 (c.1047G>T [Lys349Asn]), an orphan G protein-coupled receptor (GPCR) expressed predominantly in the brain. In vitro studies demonstrated that the K349N substitution in Gpr37L1 did not grossly alter receptor expression, surface trafficking or constitutive signaling in transfected cells. However, in vivo studies revealed that a complete loss of Gpr37L1 function in mice results in increased seizure susceptibility. Mice lacking the related receptor Gpr37 also exhibited an increase in seizure susceptibility, while genetic deletion of both receptors resulted in an even more dramatic increase in vulnerability to seizures. These findings provide evidence linking GPR37L1 and GPR37 to seizure etiology and demonstrate an association between a GPR37L1 variant and a novel progressive myoclonus epilepsy.


Assuntos
Predisposição Genética para Doença , Epilepsias Mioclônicas Progressivas/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Convulsões/metabolismo , Adolescente , Animais , Encéfalo/fisiopatologia , Criança , Feminino , Variação Genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Epilepsias Mioclônicas Progressivas/genética , Células NIH 3T3 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Convulsões/genética , Adulto Jovem
5.
Neuroscience ; 358: 49-57, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28642167

RESUMO

GPR37 is an orphan G protein-coupled receptor that is predominantly expressed in the brain and found at particularly high levels in oligodendrocytes. GPR37 has been shown to exert effects on oligodendrocyte differentiation and myelination during development, but the molecular basis of these actions is incompletely understood and moreover nothing is known about the potential role(s) of this receptor under demyelinating conditions. To shed light on the fundamental biology of GPR37, we performed proteomic studies comparing protein expression levels in the brains of mice lacking GPR37 and its close relative GPR37-like 1 (GPR37L1). These studies revealed that one of the proteins most sharply decreased in the brains of Gpr37/Gpr37L1 double knockout mice is the myelin-associated glycoprotein MAG. Follow-up Western blot studies confirmed this finding and demonstrated that genetic deletion of Gpr37, but not Gpr37L1, results in strikingly decreased brain expression of MAG. Further in vitro studies demonstrated that GPR37 and MAG form a complex when expressed together in cells. As loss of MAG has previously been shown to result in increased susceptibility to brain insults, we additionally assessed Gpr37-knockout (Gpr37-/-) vs. wild-type mice in the cuprizone model of demyelination. These studies revealed that Gpr37-/- mice exhibit dramatically increased loss of myelin in response to cuprizone, yet do not show any increased loss of oligodendrocyte precursor cells or mature oligodendrocytes. These findings reveal that loss of GPR37 alters oligodendrocyte physiology and increases susceptibility to demyelination, indicating that GPR37 could be a potential drug target for the treatment of demyelinating diseases such as multiple sclerosis.


Assuntos
Doenças Desmielinizantes/genética , Regulação da Expressão Gênica/genética , Glicoproteína Associada a Mielina/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Animais , Antígenos/metabolismo , Linhagem Celular Transformada , Imunoprecipitação da Cromatina , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores da Monoaminoxidase/toxicidade , Glicoproteína Associada a Mielina/genética , Oligodendroglia/metabolismo , Proteoglicanas/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção
6.
Brain Res ; 1585: 1-12, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25130661

RESUMO

Prosaposin (also known as SGP-1) is an intriguing multifunctional protein that plays roles both intracellularly, as a regulator of lysosomal enzyme function, and extracellularly, as a secreted factor with neuroprotective and glioprotective effects. Following secretion, prosaposin can undergo endocytosis via an interaction with the low-density lipoprotein-related receptor 1 (LRP1). The ability of secreted prosaposin to promote protective effects in the nervous system is known to involve activation of G proteins, and the orphan G protein-coupled receptors GPR37 and GPR37L1 have recently been shown to mediate signaling induced by both prosaposin and a fragment of prosaposin known as prosaptide. In this review, we describe recent advances in our understanding of prosaposin, its receptors and their importance in the nervous system.


Assuntos
Encéfalo/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fatores de Crescimento Neural/metabolismo , Saposinas/metabolismo , Animais , Isquemia Encefálica/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Lisossomos/metabolismo , Regeneração Nervosa , Sistema Nervoso/metabolismo , Neuroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 110(23): 9529-34, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690594

RESUMO

GPR37 (also known as Pael-R) and GPR37L1 are orphan G protein-coupled receptors that are almost exclusively expressed in the nervous system. We screened these receptors for potential activation by various orphan neuropeptides, and these screens yielded a single positive hit: prosaptide, which promoted the endocytosis of GPR37 and GPR37L1, bound to both receptors and activated signaling in a GPR37- and GPR37L1-dependent manner. Prosaptide stimulation of cells transfected with GPR37 or GPR37L1 induced the phosphorylation of ERK in a pertussis toxin-sensitive manner, stimulated (35)S-GTPγS binding, and promoted the inhibition of forskolin-stimulated cAMP production. Because prosaptide is the active fragment of the secreted neuroprotective and glioprotective factor prosaposin (also known as sulfated glycoprotein-1), we purified full-length prosaposin and found that it also stimulated GPR37 and GPR37L1 signaling. Moreover, both prosaptide and prosaposin were found to protect primary astrocytes against oxidative stress, with these protective effects being attenuated by siRNA-mediated knockdown of endogenous astrocytic GPR37 or GPR37L1. These data reveal that GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin.


Assuntos
Fatores de Crescimento Neural/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Saposinas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Western Blotting , Células COS , Chlorocebus aethiops , AMP Cíclico/biossíntese , Técnicas de Silenciamento de Genes , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Polissorbatos , RNA Interferente Pequeno/genética , Saposinas/farmacologia , Radioisótopos de Enxofre/metabolismo
8.
Psychiatry Res ; 202(1): 1-11, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22640688

RESUMO

Although Attention-Deficit/Hyperactivity Disorder (ADHD) and Bipolar Disorder (BPD) frequently co-occur and represent a particularly morbid clinical form of both disorders, neuroimaging research addressing this comorbidity is scarce. Our aim was to evaluate cortical thickness in ADHD and BPD, testing the hypothesis that comorbid subjects (ADHD+BPD) would have neuroanatomical correlates of both disorders. Magnetic Resonance Imaging (MRI) findings were compared between 31 adults with ADHD+BPD, 18 with BPD, 26 with ADHD, and 23 healthy controls. Cortical thickness analysis of regions of interest was estimated as a function of ADHD and BPD status, using linear regression models. BPD was associated with significantly thicker cortices in 13 regions, independently of ADHD status and ADHD was associated with significantly thinner neocortical gray matter in 28 regions, independent of BPD. In the comorbid state of ADHD plus BPD, the profile of cortical abnormalities consisted of structures that are altered in both disorders individually. Results support the hypothesis that ADHD and BPD independently contribute to cortical thickness alterations of selective and distinct brain structures, and that the comorbid state represents a combinatory effect of the two. Attention to comorbidity is necessary to help clarify the heterogeneous neuroanatomy of both BPD and ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno Bipolar/patologia , Córtex Cerebral/patologia , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno Bipolar/complicações , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem
9.
Hippocampus ; 22(8): 1652-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22368035

RESUMO

Learning and memory deficits typify patients with mild cognitive impairment (MCI) and are generally attributed to medial temporal lobe dysfunction. Although the hippocampus is perhaps the most commonly studied neuroanatomical structure in these patients, there have been few attempts to identify rehabilitative interventions that facilitate its functioning. Here, we present results from a randomized, controlled, single-blind study in which patients with MCI and healthy elderly controls (HEC) were randomized to either three sessions of mnemonic strategy training (MS) or a matched-exposure control group (XP). All participants underwent pre- and posttraining fMRI scanning as they encoded and retrieved object-location associations. For the current report, fMRI analyses were restricted to the hippocampus, as defined anatomically. Before training, MCI patients showed reduced hippocampal activity during both encoding and retrieval, relative to HEC. Following training, the MCI MS group demonstrated increased activity during both encoding and retrieval. There were significant differences between the MCI MS and MCI XP groups during retrieval, especially within the right hippocampus. Thus, MS facilitated hippocampal functioning in a partially restorative manner. We conclude that cognitive rehabilitation techniques may help mitigate hippocampal dysfunction in MCI patients.


Assuntos
Terapia Cognitivo-Comportamental/métodos , Disfunção Cognitiva/reabilitação , Transtornos da Memória/reabilitação , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Envelhecimento/psicologia , Aprendizagem por Associação/fisiologia , Disfunção Cognitiva/fisiopatologia , Hipocampo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos da Memória/fisiopatologia , Testes Neuropsicológicos , Método Simples-Cego , Estatísticas não Paramétricas , Lobo Temporal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...