Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 150(23): 234903, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31228901

RESUMO

We investigate the effect of the Schmidt number (Sc) on phase separation dynamics of two immiscible fluids in a two-dimensional periodic box using dissipative particle dynamics. The range of Sc investigated spans liquid-liquid separation processes. Phase separation is characterized by a domain size r(t), which typically follows a power law tß in time t, where ß is a characteristic exponent corresponding to the coarsening mechanism at play. The phase separation dynamics is studied for strongly (deep quench) separating mixtures. We consider cases of critical (ϕ ∼ 0.5) and off-critical (ϕ < 0.5) mixtures of fluids A and B for both ScA = ScB and ScA ≠ ScB. In all cases, the growth dynamics slow down with the increasing Schmidt number of either fluid. We observe the power law exponent ß = 0.5 for symmetric (ScA = ScB) critical mixtures and ß = 0.33 for all other cases. However, for off-critical mixtures, the exponent is 0.33 irrespective of the Schmidt number ratio of the two fluids. We explain these results from an analysis of the competition between diffusive effects vis-á-vis dynamical forces.

2.
Soft Matter ; 15(10): 2284-2291, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30775771

RESUMO

Marangoni flow created by the gradient of surface tension can be used to transport small objects along fluid interfaces. We study lateral motion of a fully wetted self-propelled body (swimmer) at a fluid-fluid interface. The swimmer releases a surfactant at a constant rate inducing a surface tension gradient. The dynamics of the insoluble surfactant is incorporated by taking into account advection by the Marangoni flow, surface diffusion and homogeneous decomposition reaction. We show that the translational speed of a Marangoni swimmer is increased as compared with the self-propulsion speed of a chemically inactive surface-bound swimmer. Flow induced in-plane rotation of the swimmer with an elongated body is generally weak so that its trajectory in the steady state is a straight line. A non-motile thin rod that releases surfactant at one of its ends is capable of surfing on the self-generated surfactant cloud. Steady surfing occurs along the body length with the source of the surfactant at the back end acting as a propulsion engine.

3.
J Chem Phys ; 147(7): 074703, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830165

RESUMO

We investigate the phase separation behavior of binary mixtures in two-dimensional periodic and confined domains using dissipative particle dynamics. Two canonical problems of fluid mechanics are considered for the confined domains: square cavity with no-slip walls and lid-driven cavity with one driven wall. The dynamics is studied for both weakly and strongly separating mixtures and different area fractions. The phase separation process is analyzed using the structure factor and the total interface length. The dynamics of phase separation in the square cavity and lid-driven cavity are observed to be significantly slower when compared to the dynamics in the periodic domain. The presence of the no-slip walls and the inertial effects significantly influences the separation dynamics. Finally, we show that the growth exponent for the strongly separating case is invariant to changes in the inter-species repulsion parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...