Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 101(2): 1164-1176, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29174152

RESUMO

This study evaluated the relationship between utilizable crude protein (uCP) at the duodenum estimated in vitro and omasal flow of crude protein (CP; omasal flow of nonammonia N × 6.25) measured in lactating dairy cows. In vivo data were obtained from previous studies estimating omasal digesta flow using a triple-marker method and 15N as microbial marker. A total of 34 different diets based on grass and red clover silages were incubated with buffered rumen fluid previously preincubated with carbohydrates for 3 h. The buffer solution was modified to contain 38 g of NaHCO3 and 1 g of (NH4)HCO3 in 1,000 mL of distilled water. Continuous sampling of the liquid phase for determination of ammonia-N was performed at 0.5, 4, 8, 12, 24, and 30 h after the start of incubation. The ammonia N concentrations after incubation were used to calculate uCP. The natural logarithm of uCP [g/kg of dry matter (DM)] at time points 0.5, 4, 8, 12, 24, and 30 h of incubation was plotted against time to estimate the concentration of uCP (g/kg of DM) at time points 16, 20, and 24 h using an exponential function. Fixed model regression analysis and mixed model regression analysis with random study effect were used to evaluate the relationships between predicted uCP (supply and concentration) and observed omasal CP flow and milk protein yield. Residual analysis was also conducted to evaluate whether any dietary factors influenced the relationships. The in vitro uCP method ranked the diets accurately in terms of total omasal CP flow (kg/d) or omasal CP flow per kilogram of DM intake. We also noted a close relationship between estimated uCP supply and adjusted omasal CP flow, as demonstrated by a coefficient of determination of 0.87, although the slope of 0.77 indicated that estimated uCP supply (kg/d) was greater than the value determined in vivo. The linear bias with mixed model analysis indicated that uCP supply overestimated the difference in omasal CP flow between the diets within a study, an error most likely related to study differences in feed intake, animals, and methodology. Predicting milk protein yield from uCP supply showed a positive relationship using a mixed model (coefficient of determination = 0.79), and we observed no difference in model fit between the time points of incubation (16, 20, or 24 h). The results of this study indicate that the in vitro method can be a useful tool in evaluating protein value of ruminant diets.


Assuntos
Bovinos/metabolismo , Duodeno/metabolismo , Proteínas do Leite/metabolismo , Omaso/metabolismo , Proteínas de Plantas/metabolismo , Amônia/análise , Amônia/metabolismo , Animais , Dieta/veterinária , Duodeno/química , Feminino , Lactação , Leite/química , Leite/metabolismo , Proteínas do Leite/análise , Proteínas de Plantas/análise , Poaceae/metabolismo , Rúmen/química , Rúmen/metabolismo , Silagem/análise , Trifolium/metabolismo
2.
J Dairy Sci ; 100(10): 8004-8017, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28803021

RESUMO

An experiment was conducted to quantify the effects of incremental levels of heat-moisture-treated canola meal (TCM) fed to dairy cows on the relationship between ruminal nutrient digestion and milk production. Experimental diets were fed to 4 multiparous rumen-cannulated Nordic Red cows, averaging (mean ± standard deviation) 681 ± 54.8 kg of body weight, 111 ± 16 d in milk, and 29.1 ± 9.1 kg of milk/d at the start of the study, in a Latin square design with four 21-d periods. The 4 experimental dietary treatments consisted of a basal diet of grass silage and crimped barley, and 3 diets in which the crimped barley was replaced with TCM, giving 3 incremental levels of protein supplementation. Nutrient flow was quantified by the omasal sampling technique using 3 markers (Cr, Yb, and indigestible neutral detergent fiber). Continuous infusion of 15N was used to label bacterial crude protein. Additionally, ruminal sampling and evacuations and measurements of total-tract digestibility were conducted. The experimental diets provided 132, 148, 164, and 180 g of crude protein/kg of dry matter. The increased level of TCM linearly increased dry matter intake from 15.1 to 16.6 kg/d and energy-corrected milk yield from 21.0 to 25.6 kg/d. The increased proportion of TCM when substituting barley with TCM was associated with greater total-tract digestibility of neutral detergent fiber and potentially digestible neutral detergent fiber, which could be explained by increased digestion rate of potentially digestible neutral detergent fiber. Omasal flow of nonammonia N naturally increased with greater dietary TCM inclusion, but the increased intestinal supply of rumen-undegradable protein was partly offset by diminished microbial protein synthesis when feeding more TCM. This was also reflected in a decreased proportion of milk protein from ruminal bacterial protein when TCM supplementation increased.


Assuntos
Brassica rapa , Suplementos Nutricionais , Lactação , Leite/metabolismo , Rúmen/metabolismo , Animais , Bovinos , Dieta/métodos , Dieta/veterinária , Fibras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Digestão , Feminino , Fermentação , Hordeum , Temperatura Alta , Poaceae , Silagem
3.
J Dairy Sci ; 98(11): 8093-106, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26364100

RESUMO

This study evaluated the effects of soybean meal (SBM) and heat-moisture-treated canola meal (TCM) on milk production and methane emissions in dairy cows fed grass silage-based diets. Twenty-eight Swedish Red cows were used in a cyclic change-over experiment with 4 periods of 21 d and with treatments in 2 × 4 factorial arrangement (however, the control diet without supplementary protein was not fed in replicate). The diets were fed ad libitum as a total mixed ration containing 600 g/kg of grass silage and 400 g/kg of concentrates on a dry matter (DM) basis. The concentrate without supplementary protein consisted of crimped barley and premix (312 and 88 g/kg of DM), providing 130 g of dietary crude protein (CP)/kg of DM. The other 6 concentrates were formulated to provide 170, 210, or 250 g of CP/kg of DM by replacing crimped barley with incremental amounts of SBM (50, 100, or 150 g/kg of diet DM) or TCM (70, 140, or 210 g/kg of diet DM). Feed intake was not influenced by dietary CP concentration, but tended to be greater in cows fed TCM diets compared with SBM diets. Milk and milk protein yield increased linearly with dietary CP concentration, with greater responses in cows fed TCM diets compared with SBM diets. Apparent N efficiency (milk N/N intake) decreased linearly with increasing dietary CP concentration and was lower for cows fed SBM diets than cows fed TCM diets. Milk urea concentration increased linearly with increased dietary CP concentration, with greater effects in cows fed SBM diets than in cows fed TCM diets. Plasma concentrations of total AA and essential AA increased with increasing dietary CP concentration, but no differences were observed between the 2 protein sources. Plasma concentrations of Lys, Met, and His were similar for both dietary protein sources. Total methane emissions were not influenced by diet, but emissions per kilogram of DM intake decreased quadratically, with the lowest value observed in cows fed intermediate levels of protein supplementation. Methane emissions per kilogram of energy-corrected milk decreased more when dietary CP concentration increased in TCM diets compared with SBM diets. Overall, replacing SBM with TCM in total mixed rations based on grass silage had beneficial effects on milk production, N efficiency, and methane emissions across a wide range of dietary CP concentrations.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Metano/metabolismo , Leite/metabolismo , Silagem/análise , Animais , Brassica napus , Indústria de Laticínios , Proteínas Alimentares/metabolismo , Feminino , Hordeum , Lactação , Proteínas do Leite/análise , Poaceae , Glycine max
4.
J Dairy Sci ; 98(5): 3274-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25747835

RESUMO

The objective of this study was to develop and compare techniques for determining nutrient flow based on digesta samples collected from the reticulum or rumen of lactating dairy cows with estimates generated by the omasal sampling technique. Pre-experimental method development suggested, after comparing with the particle size distribution of feces, application of primary sieving of ruminal and reticular digesta from lactating cows through an 11.6-mm sieve, implying that digesta particles smaller than this were eligible to flow out of the rumen. For flow measurements at the different sampling sites 4 multiparous, lactating Nordic Red cows fitted with ruminal cannulas were used in a Latin square design with 4 dietary treatments, in which crimped barley was replaced with 3 incremental levels of protein supplementation of canola meal. Digesta was collected from the rumen, reticulum, and omasum to represent a 24-h feeding cycle. Nutrient flow was calculated using the reconstitution system based on Cr, Yb, and indigestible neutral detergent fiber and using (15)N as microbial marker. Large and small particles and the fluid phase were recovered from digesta collected at all sampling sites. Bacterial samples were isolated from the digesta collected from the omasum. Several differences existed for digesta composition, nutrient flows, and estimates of ruminal digestibility among the 3 different sampling sites. Sampling site × diet interactions were not significant. The estimated flows of DM, potentially digestible neutral detergent fiber, nonammonia N, and microbial N were significantly different between all sampling sites. However, the difference between DM flow based on sampling from the reticulum and the omasum was small (0.13kg/d greater in the omasum). The equality between the reticulum and the omasum as sampling sites was supported by the following regression: omasal DM flow=0.37 (±0.649) + 0.94 (±0.054) reticular DM flow (R(2)=0.96 and root mean square error=0.438kg/d). More deviating nutrient-flow estimates when sampling digesta from the rumen than the reticulum compared with the omasum suggested that sampling from the reticulum is the most promising alternative to the omasal sampling technique. To definitively promote sampling from the reticulum as an alternative to the omasal sampling technique, more research is needed to determine selection criteria of reticular digesta for accurate and precise flow estimates across a range of diets.


Assuntos
Digestão , Lactação , Omaso/química , Retículo/química , Rúmen/química , Animais , Bovinos , Dieta/veterinária , Fibras na Dieta/administração & dosagem , Feminino , Leite/metabolismo , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...