Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895802

RESUMO

Benzoyl-carbazole and its derivatives are considered a platform for exploring processes such as room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF). They have also been reported to exhibit dual emission, but there is a great spectral variability in the relative intensity of the emission bands reported in different studies. To better understand the fundamental photophysical properties, we set to explore BCz and its perfluorinated derivative F5BCz using spectroscopy and quantum chemical simulations. We find that the reported dual fluorescence in solution and in films results from a photochemical process (photo-Fries rearrangement), producing carbazole among other products, explaining the variation in the reported emission spectra. In addition, BCz exhibits solvent dependent TADF, which is explained by the stabilization of the charge transfer S1 state in polar solvents. F5BCz undergoes an efficient photochemical process (Mallory reaction) from its single state to produce highly fluorescent product c-F5BCz, in 40% isolated yield. This photoreactivity also proceeds in films under ambient conditions, which have significant implications on the applications of BCz-based materials for optoelectronic applications.

2.
Org Biomol Chem ; 22(7): 1365-1368, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38258458

RESUMO

We applied post-cyclization annulation to introduce a series of tethered S-shaped double [4]helicenes in which the intramolecular tether imposes a specific helical handedness. Introducing a tether and then shortening the tether length incrementally increase the pitch angle of [4]helicene, thus enabling a quantitative study of the effects of helicene's pitch on its electronic and (chiro)optical properties.

3.
Angew Chem Int Ed Engl ; 63(11): e202319318, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38224528

RESUMO

Helicity is expressed differently in ortho- and para-fused acenes-helicenes and twistacenes, respectively. While the extent of helicity is constant in helicenes, it can be tuned in twistacenes, and the handedness of flexible twistacenes is often determined by more rigid helicenes. Here, we combine helicenes with rigid twistacenes consisting of a tunable degree of twisting, forming helitwistacenes. While the X-ray structures reveal that the connection does not affect the helicity of each moiety, their electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) spectra are strongly affected by the helicity of the twistacene unit, resulting in solvent-induced sign inversion. ROESY NMR and TD-DFT calculations support this observation, which is explained by differences in the relative orientation of the helicene and twistacene moieties.

4.
Chem Commun (Camb) ; 60(5): 522-529, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38109063

RESUMO

This Feature Article overviews a new class of π-conjugated materials - macrocyclic furans. Starting from their synthesis, we review their unique structural, optical and electronic properties, chemical reactivity, and potential application as synthons. Finally, we discuss the study of oligofuran macrocycles as a model system for exploring the concept of global aromaticity and the size limitation of Hückel's rule in neutral macrocycles.

5.
Commun Chem ; 6(1): 100, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244950

RESUMO

Aromaticity can be assigned by Hückel's rule, which predicts that planar rings with delocalized (4n + 2) π-electrons are aromatic, whereas those with 4n π-electrons are antiaromatic. However, for neutral rings, the maximal value of "n" to which Hückel's rule applies remains unknown. Large macrocycles exhibiting global ring current can serve as models for addressing this question, but the global ring current are often overshadowed in these molecules by the local ring current of the constituent units. Here, we present a series of furan-acetylene macrocycles, ranging from the pentamer to octamer, whose neutral states display alternating contributions from global aromatic and antiaromatic ring currents. We find that the odd-membered macrocycles display global aromatic characteristics, whereas the even-membered macrocycles display contributions from globally antiaromatic ring current. These factors are expressed electronically (oxidation potentials), optically (emission spectra), and magnetically (chemical shifts), and DFT calculations predict global ring current alternations up to 54 π-electrons.

6.
Chirality ; 35(9): 562-568, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36896481

RESUMO

The chiral-induced spin selectivity (CISS) effect relates to the spin-selective electron transport through chiral molecules; therefore, the chiral molecules act as spin filters. In past studies, correlation was found between the magnitude of the spin filtering and the intensity of the circular dichroism (CD) spectrum (the first Compton peak) of the molecules. Since the intensity of the CD peak relates to both the magnitude of the electric and magnetic dipole transitions, it was not clear which of these properties correlate with the CISS effect. This work aims at addressing this question. By studying the spin-dependent conduction and the CD spectra of the thiol-functionalized enantiopure binaphthalene (BINAP) and ternaphthalene (TERNAP), we found that both BINAP and TERNAP exhibit a similar spin polarization of 50%, despite the first Compton peak in TERNAP being almost twice as intense as the peak in BINAP. These results can be explained by the similar values of their anisotropy (or dissymmetry) factor, gabs , which is proportional to the magnetic transition dipole moment. Hence, we concluded that the CISS effect is proportional to the transition dipole moment in chiral molecules, namely, to the dissymmetry factor.

7.
J Am Chem Soc ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765468

RESUMO

Chirality ('handedness') is a property that underlies a broad variety of phenomena in nature. Chiral molecules appear in two forms, and each is a mirror image of the other, the two enantiomers. The chirality of molecules is associated with their optical activity, and circular dichroism is commonly applied to identify the handedness of chiral molecules. Recently, the chiral induced spin selectivity (CISS) effect was established, according to which transfer of electrons within chiral molecules depends on the electron's spin. Which spin is preferred depends on the handedness of the chiral molecule and the direction of motion of the electron. Several experiments in the past indicated that there may be a relation between the optical activity of the molecules and their spin selectivity. Here, we show that for a molecule containing several stereogenic axes, when adsorbed on a metal substrate, the peaks in the CD spectra have the same signs for the two enantiomers. This is not the case when the molecules are adsorbed on a nonmetallic substrate or dissolved in solution. Quantum chemical simulations are able to explain the change in the CD spectra upon adsorption of the molecules on conductive and nonconductive surfaces. Surprisingly, the CISS properties are similar for the two enantiomers when adsorbed on the metal substrate, while when the molecules are adsorbed on nonmetallic surface, the preferred spin depends on the molecule handedness. This correlation between the optical activity and the CISS effect indicates that the CISS effect relates to the global polarizability of the molecule.

8.
Chem Commun (Camb) ; 59(14): 2011-2014, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36723083

RESUMO

The effect of axial and helical twisting on the circularly polarized luminescence of acenes was studied both experimentally and computationally, using four series of tethered twisted acenes. We find that the combination of axial and helical chirality yields the highest anisotropy factors, and that the ratio between the absorption and emission anisotropy factors is an intrinsic property for twistacenes.

9.
Chem Commun (Camb) ; 58(98): 13652-13655, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36412186

RESUMO

Applying sequential Diels-Alder cycloaddition and deoxygenation to small π-conjugated furan macrocycles fully converts them to 1,4-naphthalophanes with either ethylene or acetylene spacers, depending on the reaction conditions. 1,4-Napthalenophane tetraene exhibits a 1,3-alternating conformation in the solid state, inclusion of solvent molecules within the macrocycle, and low reduction potentials.

10.
Chemistry ; 28(62): e202202082, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35932151

RESUMO

Macrocyclic furans are predicted to switch between global aromaticity and antiaromaticity, depending on their oxidation states. However, the macrocyclic furans reported to date are stabilized by electron withdrawing groups, which result in inaccessible oxidation states. To circumvent this problem, a post-macrocyclization approach was applied to introduce methylene-substituted macrocyclic furans, which display an extremely low oxidation potential of -0.23 vs. Fc/Fc+ , and are partially oxidized in ambient conditions. Additional oxidation to the dication results in aromaticity switching to a global 30πe- aromatic state, as indicated by the formation of a strong diatropic current observed in the 1 H NMR spectrum. NICS and ACID calculations support this trend and provide evidence for a different pathway for the global current in the neutral and dicationic states. According to these findings, macrocyclic furans can be rendered as promising p-type materials with stable oxidation states.

11.
Nat Commun ; 13(1): 451, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064118

RESUMO

The properties of π-conjugated oligomers and polymers are commonly controlled by side group engineering, main chain engineering, or conformational engineering. The last approach is typically limited to controlling the dihedral angle around the interring single bonds to prevent loss of π-conjugation. Here we propose a different approach to conformational engineering that involves controlling the twist of the aromatic units comprising the backbone by using a tether of varying lengths. We demonstrate this approach by synthesizing an inherently twisted building unit comprised of helically locked tethered acenes, bearing acetylene end-groups to enable backbone extension, which was applied in a series of nine helical oligomers with varying backbone length and twist. We find that the optical and electronic properties of π-conjugated systems may be determined by the additive, antagonistic, or independent effects of backbone length and twist angle. The twisted oligomers display chiral amplification, arising from the formation of secondary helical structures.

12.
Phys Chem Chem Phys ; 24(4): 2357-2362, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35018908

RESUMO

Due to their unique excited state dynamics, acenes play a dominant role in optoelectronic and light-harvesting applications. Their optical and electronic properties are typically tailored by side-group engineering, which often result in distortion of the acene core from planarity. However, the effect of such distortion on their excited state dynamics is not clear. In this work, we investigate the effect of twisting on the photophysics of acenes, which are helically locked to a defined twist angle by tethers of different lengths. Ultrafast transient absorption and time resolved fluorescence show a clear dependence of the rate of intersystem crossing with twisting. This trend is explained using quantum chemical calculations, showing an increase of spin-orbit coupling (SOC). At much earlier times, structural reorganization in S1, including coherent vibrational wave packet motions, is reflected in transient spectral changes. As predicted by theory, decreasing the length of diagonal tether induces enhanced activity and frequency blue-shifting of a normal vibration consisting of anthracene twisting against restraint of the tethering chain. Overall, these results serve as design principles for tuning photophysical properties of acenes via controlled twisting of their aromatic core.

13.
Chemistry ; 27(71): 17794-17801, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34747542

RESUMO

In π-conjugated macrocycles, there is a trade-off between the global and local expression of effects such as aromaticity, with the outcome of the trade-off determined by the geometry and aromaticity of the constituent units. Compared with other aromatic rings, the aromatic character of furan is relatively small, and therefore global effects in macrocyclic furans are expected to be more pronounced. Following our introduction of macrocyclic oligofuran, we present the first synthesis of a series of π-conjugated bifuran macrocycles of various ring sizes, from trimer to hexamer, and characterize them using both computational and experimental methods. The properties of macrocyclic oligofurans change considerably with size: The smaller trimer is rigid, weakly emissive and planar as revealed by its single crystal structure, and displays global antiaromaticity. In contrast, the larger pentamer and hexamer are flexible, emissive, have non-planar structures, and exhibit local aromaticity. The results are supported by NICS and ACID calculations that indicate the global antiaromaticity of planar furan macrocycles, and by transient absorption measurements showing sharp absorption band for the trimer and only the internal conversion decay pathway.


Assuntos
Conformação Molecular
14.
European J Org Chem ; 2021(39): 5424-5429, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34819798

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely used in organic electronic devices. The electronic, magnetic, and optical properties of PAHs can be tuned by structural modifications to the aromatic backbone to introduce an inherent distortion from planarity, such as bending or twisting. However, it remains difficult to isolate and control the effects of such distortions. Here, we sought to understand how backbone twisting and bending affect the electronic properties of acenes, as models for larger PAHs. We found that, even when highly distorted from planarity (30° per ring), acenes maintain their aromatic character and π orbital delocalization with minor mixing of the σ and π orbitals. In addition, the energy gap between the HOMO and LUMO decreases with increasing twist, while the gap is hardly affected by bending, since the energy of both orbitals increase to a similar extent. For bent acenes in the triplet state, the spin becomes more localized with increasing bend, whereas twisting produces an evenly distributed spin delocalization. These findings can guide the synthesis of PAHs with tailored properties.

15.
Phys Chem Chem Phys ; 23(25): 13996-14003, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34151326

RESUMO

In this article the Raman and Raman Optical Activity (ROA) spectra of a series of enantiomeric twisted anthracenes are presented. The evolution of their vibrational spectra is understood in the context of the variation of π-electron delocalization as a result of the twisting imparted by the belt structure and in terms of the modulation of the resonance Raman/ROA effects which are photonic properties also tuned by anthracene twisting. The Raman/ROA vibrational spectra are simulated by several theoretical approaches to account for their vibrational and electronic properties including the theoretical evaluation of resonance effects. We furthermore incorporate a vibrational and ROA activity dissection analysis as provided in the Pyvib2 program valid to establish correlations among vibrational modes of different molecules with different electronic structures and equivalent vibrational dynamics. This paper is one of the very first attempts to use ROA spectroscopy in π-conjugated molecules with twisted and helical morphologies that contrast with the well-known cases of ROA studies of chiral helicenes in which the impact of π-electron delocalization in the electronic/photonic/vibrational (Raman/ROA) spectra is negligible.

16.
Macromolecules ; 53(21): 9521-9528, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33191953

RESUMO

The electronic properties of conducting polymers are influenced by their micro- and macrostructural orders, which can be tailored by substituent modification. However, while the effect of substituents on conducting polymers is extensively investigated, chiral substituents are far less studied. Furthermore, many chiral conducting polymers have regioirregular structures, which result in polymer films with inferior properties. In this work, we apply electronic circular dichroism (ECD) spectroscopy to study the morphological changes to the chiral polymers under different polymerization conditions. For this purpose, we investigated 3,4-ethylenedioxythiophene (EDOT) derivatives having two stereogenic centers on each monomer and bearing methyl or phenyl side groups (dimethyl-EDOT and diphenyl-EDOT, respectively). Polymerizing the enantiomerically pure monomers produces regioregular and stereoregular dimethyl-PEDOT and diphenyl-PEDOT, respectively. The effect of the electrolyte and solvent on polymer film morphology was studied using scanning electron microscopy (SEM) and ECD, showing a correlation between the polymer's morphology and the chiroptical properties of its films. We found that, for diphenyl-PEDOT, the combination of perchlorate anion electrolyte and acetonitrile solvent resulted in a unique morphology characterized by significant intermolecular interactions. These interactions were clearly observable in the ECD spectra in the form of exciton couplings, whose presence was supported by TD-DFT calculations. A small enantiomeric excess was sufficient to induce very intense ECD signals, demonstrating chiral amplification in electropolymerized films.

17.
Org Lett ; 22(20): 7809-7813, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32966095

RESUMO

The use of polyaromatic hydrocarbons to capture and release singlet oxygen is of considerable importance in materials chemistry, synthesis, and photodynamic therapy. Here we studied the ability of a series of tethered twistacenes, possessing different degrees of backbone twist, to capture and release singlet oxygen via the reversible Diels-Alder reaction. When the twistacene acts as both a sensitizer and a diene, the photo-oxidation rate depends on the extinction coefficient of the irradiation wavelength. However, when the twistacenes function solely as a diene, the rate of photo-oxidation increases with increasing twist. The rate of the reverse reaction, the singlet oxygen release, also increases with increasing twist. The calculated transition state energy decreases with increasing twist, which can explain the observed trend. The presence of the tether significantly increases the reversibility of the reaction, which can proceed in repeated forward and reverse cycles in very high yield under mild conditions, as required for molecular switches.

18.
Phys Chem Chem Phys ; 21(38): 21588-21595, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31539003

RESUMO

Twisting of the acene backbone out of planarity in twisted acenes leads to a variation in their optical and electronic properties. The effect of increasing twist angles on the properties of the photoexcited triplet states of a series of anthracene-based helically tethered twisted acenes is investigated here by Electron Paramagnetic Resonance (EPR) spectroscopy. Increasing signal intensities with increasing twist angles indicate increased intersystem crossing efficiencies for the twisted molecules compared to the untethered reference compound. Variations in the electron spin polarisation observed in the transient EPR spectra, in particular for the compound with the shortest tether, imply changes in the sublevel population kinetics depending on molecular geometry. Changes in the zero-field splitting parameters and in the proton hyperfine couplings for compounds with short tethers and therefore higher twist angles point towards a slight redistribution of the spin density compared to the parent compound. The experimental results can be explained by considering both an increase in twist angle and a related decrease in the dihedral angle between the phenyl side groups and the acene core. The observation of a clear excitation-wavelength dependence suggests preferential excitation of different molecular conformations, with conformers characterised by higher twist angles selected at higher wavelengths.

19.
Acc Chem Res ; 52(9): 2482-2490, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31453688

RESUMO

The properties of polycyclic aromatic hydrocarbons are determined by their size, shape, and functional groups. Equally important is their curvature, since deviation from planarity can affect their optical, electronic, and magnetic properties and also induce chirality. Acenes, which can be viewed as one-dimensional nanocarbons, are often twisted out of planarity. Although twisting is expected to affect the above-mentioned properties, it is often overlooked. This Account focuses on helically locked twistacenes (twisted acenes) having different twist angles and the effect of twisting on their electronic and optical properties. Various synthetic approaches to inducing backbone twist in acenes are discussed, with a focus on the introduction of a diagonal tether across the core, as this minimizes confounding substituent effects. Using such tethered acenes as our model, we then discuss the effects of twisting the aromatic core on twistacene properties. Electronic properties. Increasing the degree of twist only slightly affects the HOMO and LUMO energy levels. Twisting leads to a small increase in the HOMO level and a decrease in the LUMO level, which produces an overall decrease in the HOMO-LUMO gap. Optical properties. As the degree of twist increases, a slight bathochromic shift is observed in the absorption spectra, in accordance with the decrease in the HOMO-LUMO gap. The fluorescence quantum efficiency and the fluorescence lifetime also decrease. This is likely to be related to an increasing rate of intersystem crossing, which arises from increased spin-orbit coupling. In addition, computational studies indicate that the S0-T1 energy gap decreases with increasing twist. Chiroptical properties. Increased twisting results in a larger Cotton effect and anisotropy factor, with the anisotropy factors of Ant-Cn being higher than those of longer helicenes. The parallel orientation of electric and magnetic transition dipole moments in twistacenes underlies this behavior and renders them as excellent chiroptical materials. The same trend is observed for the radical cations of twistacenes, which absorb in the NIR spectral region. Conjugation and delocalization. Twisting the anthracene radical cation up to 40° (13° per benzene ring) does not significantly affect spin delocalization, with the EPR spectra of twistacene radical cations showing that only slight localization occurs. This is in line with computational studies, which show only a small decrease in π-overlap for large acene twist. Overall, modifying the length of the tether in diagonally tethered acenes allows chemists to control core twist and to induce chirality. Twisting affects key optical, electronic, and chiroptical properties of acenes. Consequently, controlling the twist angle can improve the future design of nanocarbons with desired properties.

20.
Nano Lett ; 19(9): 6621-6628, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31407917

RESUMO

Sequence-specific aptamers act as functional scaffolds for the assembly of photosynthetic model systems. The Ru(II)-tris-bipyridine photosensitizer is conjugated by different binding modes to the antityrosinamide aptamer to yield a set of photosensitizer-aptamer binding scaffolds. The N-methyl-N'-(3-aminopropane)-4,4'-bipyridinium electron acceptor, MV2+, is covalently linked to tyrosinamide, TA, to yield the conjugate TA-MV2+. The tyrosinamide unit in TA-MV2+ acts as a ligand for anchoring TA-MV2+ to the Ru(II)-tris-bipyridine-aptamer scaffold, generating the diversity of photosensitizer-aptamer/electron acceptor supramolecular conjugates. Effective electron transfer quenching in the photosynthetic model systems is demonstrated, and the quenching efficiencies are controlled by the structural features of the conjugates. The redox species generated by the photosensitizer-aptamer/electron acceptor supramolecular systems mediate the ferredoxin-NADP+ reductase, FNR, catalyzed synthesis of NADPH, and the Pt-nanoparticle-catalyzed evolution of hydrogen (H2). The novelty of the study rests on the unprecedented use of aptamer scaffolds as functional units for organizing photosynthetic model systems.


Assuntos
Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Modelos Químicos , Fármacos Fotossensibilizantes/química , Fotossíntese , Platina/química , Transporte de Elétrons , Ferredoxina-NADP Redutase/química , NADP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...