Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 73: 168-181, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917915

RESUMO

5-aminovalerate (AVA) is a platform chemical of substantial commercial value to derive nylon-5 and five-carbon derivatives like δ-valerolactam, 1,5-pentanediol, glutarate, and 5-hydroxyvalerate. Denovo bio-production synthesis of AVA using metabolically engineered cell factories is regarded as exemplary route to provide this chemical in a sustainable way. So far, this route is limited by low titers, rates and yields and suffers from high levels of by-products. To overcome these limitations, we developed a novel family of AVA producing C. glutamicum cell factories. Stepwise optimization included (i) improved AVA biosynthesis by expression balancing of the heterologous davBA genes from P. putida, (ii) reduced formation of the by-product glutarate by disruption of the catabolic y-aminobutyrate pathway (iii), increased AVA export, and (iv) reduced AVA re-import via native and heterologous transporters to account for the accumulation of intracellular AVA up to 300 mM. Strain C. glutamicum AVA-5A, obtained after several optimization rounds, produced 48.3 g L-1 AVA in a fed-batch process and achieved a high yield of 0.21 g g-1. Surprisingly in later stages, the mutant suddenly accumulated glutarate to an extent equivalent to 30% of the amount of AVA formed, tenfold more than in the early process, displaying a severe drawback toward industrial production. Further exploration led to the discovery that ArgD, naturally aminating N-acetyl-l-ornithine during l-arginine biosynthesis, exhibits deaminating side activity on AVA towards glutarate formation. This promiscuity became relevant because of the high intracellular AVA level and the fact that ArgD became unoccupied with the gradually stronger switch-off of anabolism during production. Glutarate formation was favorably abolished in the advanced strains AVA-6A, AVA-6B, and AVA-7, all lacking argD. In a fed-batch process, C. glutamicum AVA-7 produced 46.5 g L-1 AVA at a yield of 0.34 g g-1 and a maximum productivity of 1.52 g L-1 h-1, outperforming all previously reported efforts and stetting a milestone toward industrial manufacturing of AVA. Notably, the novel cell factories are fully genome-based, offering high genetic stability and requiring no selection markers.


Assuntos
Corynebacterium glutamicum , Carbono/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Fermentação , Glutaratos/metabolismo , Proteínas de Membrana Transportadoras/genética , Engenharia Metabólica
2.
Biotechnol J ; 14(9): e1800417, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31106985

RESUMO

Ectoine is formed in various bacteria as cell protectant against all kinds of stress. Its preservative and protective effects have enabled various applications in medicine, cosmetics, and biotechnology, and ectoine therefore has high commercial value. Industrially, ectoine is produced in a complex high-salt process, which imposes constraints on the costs, design, and durability of the fermentation system. Here, Corynebacterium glutamicum is upgraded for the heterologous production of ectoine from sugar and molasses. To overcome previous limitations, the ectoine pathway taken from Pseudomonas stutzeri is engineered using transcriptional balancing. An expression library with 185,193 variants is created, randomly combining 19 synthetic promoters and three linker elements. Strain screening discovers several high-titer mutants with an improvement of almost fivefold over the initial strain. High production thereby particularly relies on a specifically balanced ectoine pathway. In an optimized fermentation process, the new top producer C. glutamicum ectABCopt achieves an ectoine titer of 65 g L-1 and a specific productivity of 120 mg g-1 h-1 . This process is the first reported example of a simple fermentation process under low-salt conditions using well-established feedstocks to produce ectoine with industrial efficiency. There is a compelling case for more intensive implementation of transcriptional balancing in future metabolic engineering of C. glutamicum.


Assuntos
Diamino Aminoácidos/metabolismo , Corynebacterium glutamicum/metabolismo , Engenharia Metabólica/métodos , Biotecnologia/métodos , Corynebacterium glutamicum/genética , Plasmídeos/genética
3.
Biotechnol Bioeng ; 115(6): 1499-1508, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427435

RESUMO

Microbial electrochemical technologies (MET) are promising to drive metabolic processes for the production of chemicals of interest. They provide microorganisms with an electrode as an electron sink or an electron source to stabilize their redox and/or energy state. Here, we applied an anode as additional electron sink to enhance the anoxic metabolism of the industrial bacterium Corynebacterium glutamicum through an anodic electro-fermentation. In using ferricyanide as extracellular electron carrier, anaerobic growth was enabled and the feedback-deregulated mutant Corynebacterium glutamicum lysC further accumulated L-lysine. Under such oxidizing conditions we achieved L-lysine titers of 2.9 mM at rates of 0.2 mmol/L/hr. That titer is comparable to recently reported L-lysine concentrations achieved by anaerobic production under reductive conditions (cathodic electro-fermentation). However unlike other studies, our oxidative conditions allowed anaerobic cell growth, indicating an improved cellular energy supply during anodic electro-fermentation. In that light, we propose anodic electro-fermentation as the right choice to support C. glutamicum stabilizing its redox and energy state and empower a stable anaerobic production of L-lysine.


Assuntos
Corynebacterium glutamicum/crescimento & desenvolvimento , Corynebacterium glutamicum/metabolismo , Técnicas Eletroquímicas/métodos , Eletrodos/microbiologia , Lisina/metabolismo , Anaerobiose , Fermentação , Ferricianetos/metabolismo
4.
Adv Biochem Eng Biotechnol ; 162: 217-263, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-27872959

RESUMO

Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.


Assuntos
Corynebacterium glutamicum/fisiologia , Engenharia Metabólica/métodos , Biologia de Sistemas/métodos
5.
Microb Cell Fact ; 15(1): 154, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27618862

RESUMO

BACKGROUND: The steadily growing world population and our ever luxurious life style, along with the simultaneously decreasing fossil resources has confronted modern society with the issue and need of finding renewable routes to accommodate for our demands. Shifting the production pipeline from raw oil to biomass requires efficient processes for numerous platform chemicals being produced with high yield, high titer and high productivity. RESULTS: In the present work, we established a de novo bio-based production process for the two carbon-5 platform chemicals 5-aminovalerate and glutarate on basis of the lysine-hyperproducing strain Corynebacterium glutamicum LYS-12. Upon heterologous implementation of the Pseudomonas putida genes davA, encoding 5-aminovaleramidase and davB, encoding lysine monooxygenase, 5-aminovalerate production was established. Related to the presence of endogenous genes coding for 5-aminovalerate transaminase (gabT) and glutarate semialdehyde dehydrogenase, 5-aminovalerate was partially converted to glutarate. Moreover, residual L-lysine was secreted as by-product. The issue of by-product formation was then addressed by deletion of the lysE gene, encoding the L-lysine exporter. Additionally, a putative gabT gene was deleted to enhance 5-aminovalerate production. To fully exploit the performance of the optimized strain, fed-batch fermentation was carried out producing 28 g L(-1) 5-aminovalerate with a maximal space-time yield of 0.9 g L(-1) h(-1). CONCLUSIONS: The present study describes the construction of a recombinant microbial cell factory for the production of carbon-5 platform chemicals. Beyond a basic proof-of-concept, we were able to specifically increase the production flux of 5-aminovalerate thereby generating a strain with excellent production performance. Additional improvement can be expected by removal of remaining by-product formation and bottlenecks, associated to the terminal pathway, to generate a strain being applicable as centerpiece for a bio-based production of 5-aminovalerate.


Assuntos
Amidoidrolases/genética , Aminoácidos Neutros/biossíntese , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Glutaratos/metabolismo , Engenharia Metabólica/métodos , Amidoidrolases/biossíntese , Amidoidrolases/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/deficiência , Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas de Bactérias/genética , Carbono/metabolismo , Corynebacterium glutamicum/enzimologia , Fermentação , Lisina/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Biologia Sintética/métodos , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...