Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 469689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859655

RESUMO

Stripe rust (Pst) is a major disease of wheat crops leading untreated to severe yield losses. The use of fungicides is often essential to control Pst when sudden outbreaks are imminent. Sensors capable of detecting Pst in wheat crops could optimize the use of fungicides and improve disease monitoring in high-throughput field phenotyping. Now, deep learning provides new tools for image recognition and may pave the way for new camera based sensors that can identify symptoms in early stages of a disease outbreak within the field. The aim of this study was to teach an image classifier to detect Pst symptoms in winter wheat canopies based on a deep residual neural network (ResNet). For this purpose, a large annotation database was created from images taken by a standard RGB camera that was mounted on a platform at a height of 2 m. Images were acquired while the platform was moved over a randomized field experiment with Pst-inoculated and Pst-free plots of winter wheat. The image classifier was trained with 224 × 224 px patches tiled from the original, unprocessed camera images. The image classifier was tested on different stages of the disease outbreak. At patch level the image classifier reached a total accuracy of 90%. To test the image classifier on image level, the image classifier was evaluated with a sliding window using a large striding length of 224 px allowing for fast test performance. At image level, the image classifier reached a total accuracy of 77%. Even in a stage with very low disease spreading (0.5%) at the very beginning of the Pst outbreak, a detection accuracy of 57% was obtained. Still in the initial phase of the Pst outbreak with 2 to 4% of Pst disease spreading, detection accuracy with 76% could be attained. With further optimizations, the image classifier could be implemented in embedded systems and deployed on drones, vehicles or scanning systems for fast mapping of Pst outbreaks.

2.
Pest Manag Sci ; 74(6): 1251-1258, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29283495

RESUMO

BACKGROUND: Field experiments examining target-oriented variable-rate fungicide spraying were performed in 2015 and 2016. The spray volume was adapted in real time to the local green coverage level of winter wheat (Triticum aestivum L.), which was detected using a camera sensor. RESULTS: Depending on the growth heterogeneity in the three strip trials in 2015, fungicide savings in the sensor-sprayed strip compared with the adjacent uniformly sprayed strip were 44%, 45% and 1%. In the 2016 field trial, the saving was 12%. There was no greater level of senescence or disease occurrence, and no higher yield losses in the camera-controlled variable-rate sprayed strips compared with the adjacent uniformly sprayed strips. CONCLUSIONS: From an ecological and economical point of view, sensor-controlled variable-rate spraying technology, which uses the level of green crop coverage as the plant parameter to adapt the spray volume locally, can be an alternative to the common practice of uniform spraying. © 2017 Society of Chemical Industry.


Assuntos
Proteção de Cultivos/instrumentação , Fungicidas Industriais/administração & dosagem , Doenças das Plantas/prevenção & controle , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Alemanha , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Estações do Ano , Triticum/parasitologia
3.
Sensors (Basel) ; 11(4): 3765-79, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163820

RESUMO

Head blight on wheat, caused by Fusarium spp., is a serious problem for both farmers and food production due to the concomitant production of highly toxic mycotoxins in infected cereals. For selective mycotoxin analyses, information about the on-field status of infestation would be helpful. Early symptom detection directly on ears, together with the corresponding geographic position, would be important for selective harvesting. Hence, the capabilities of various digital imaging methods to detect head blight disease on winter wheat were tested. Time series of images of healthy and artificially Fusarium-infected ears were recorded with a laboratory hyperspectral imaging system (wavelength range: 400 nm to 1,000 nm). Disease-specific spectral signatures were evaluated with an imaging software. Applying the 'Spectral Angle Mapper' method, healthy and infected ear tissue could be clearly classified. Simultaneously, chlorophyll fluorescence imaging of healthy and infected ears, and visual rating of the severity of disease was performed. Between six and eleven days after artificial inoculation, photosynthetic efficiency of infected compared to healthy ears decreased. The severity of disease highly correlated with photosynthetic efficiency. Above an infection limit of 5% severity of disease, chlorophyll fluorescence imaging reliably recognised infected ears. With this technique, differentiation of the severity of disease was successful in steps of 10%. Depending on the quality of chosen regions of interests, hyperspectral imaging readily detects head blight 7 d after inoculation up to a severity of disease of 50%. After beginning of ripening, healthy and diseased ears were hardly distinguishable with the evaluated methods.


Assuntos
Diagnóstico por Imagem/métodos , Fusariose/diagnóstico , Fusarium/isolamento & purificação , Processamento de Sinais Assistido por Computador , Triticum , Clorofila/análise , Diagnóstico por Imagem/instrumentação , Fluorescência , Fotossíntese , Doenças das Plantas , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...