Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35888064

RESUMO

Immature stages of insects are vulnerable to various antagonists, including pathogens. While the abiotic factors affecting pathogen prevalence in insect populations are reasonably well documented, much less is known about relevant ecological interactions. We studied the probability of the larvae of three lepidopteran species to die from fungal infection as a function of insect species and food plants in central Argentina. Local free-growing food plants were used to feed the lepidopteran larvae. The prevalence of entomopathogenic fungi remained low (about 5%), which is a value well consistent with observations on similar systems in other regions. Eight fungal species recorded, primarily belonging to Fusarium and Aspergillus, add evidence to the reconsideration of the nutritional modes in these genera in distinguishing the role of some species (complexes) to cause insect infections. Food plant species were found to have a substantial effect on the prevalence of entomopathogenic fungi. This was especially clear for the most abundant fungal species, a representative of the Fusarium fujikuroi complex. Feeding on a particular plant taxon can thus have a specific fitness cost. Compared to the data collected from Northern Europe, the Argentinian assemblages from the families Aspergillaceae and Nectriaceae overlapped at the genus level but did not share species. It remains to be confirmed if this level of divergence in the composition of assemblages of entomopathogenic fungi among distant regions represents a global pattern.

2.
Ecol Evol ; 12(5): e8926, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646316

RESUMO

Natural enemies shape the fate of species at both ecological and evolutionary time scales. While the effects of predators, parasitoids, and viruses on insects are well documented, much less is known about the ecological and evolutionary role of entomopathogenic fungi. In particular, it is unclear to which extent may the spatiotemporal distribution patterns of these pathogens create selective pressures on ecological traits of herbivorous insects. In the present study, we reared three lepidopteran species in semi-natural conditions in a European hemiboreal forest habitat. We studied the probability of the insects to die from fungal infection as a function of insect species, food plant, study site, (manipulated) condition of the larvae, and the phenological phase. The prevalence of entomopathogenic fungi remained low to moderate with the value consistently below 10% across the subsets of the data while as many as 23 fungal species, primarily belonging to the families Cordycipitaceae, Aspergillaceae, and Nectriaceae, were recorded. There were no major differences among the insect species in prevalence of the infections or in the structure of associated fungal assemblages. The family Cordycipitaceae, comprising mainly obligatory entomopathogens, dominated among the pathogens of pupae but not among the pathogens of larvae. Overall, there was evidence for a relatively weak impact of the studied ecological factors on the probability to be infected by a fungal pathogen; there were no effects of food plant, study site, or phenology which would be consistent over the study species and developmental stages of the insects. Nevertheless, when the prevalence of particular fungal taxa was studied, Akanthomyces muscarius was found infecting insects fed with leaves of only one of the food plant, Betula spp. Feeding on a particular plant taxon can thus have specific fitness costs. This demonstrates that fungus-mediated effects on insect life history traits are possible and deserve attention.

3.
J Fungi (Basel) ; 7(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466243

RESUMO

The knowledge about the diversity and ecological role of entomopathogenic fungi is primarily based on agroecosystems whereas information derived from natural insect populations is much more limited. To contribute to filling this gap, we recorded the prevalence of fungal infections in laboratory rearing experiments with five species of Lepidoptera, and in a field rearing experiment including one of these moths. The diversity of detected fungi was found to be high; we isolated 25 species of fungi from insects that had died in the course of these experiments. Six species belonged to the family Cordycipitaceae known to include unambiguous insect pathogens. The trophic niche of the representatives of other taxa is less clear and requires further studies. Regarding the most abundant species, Cordyceps farinosa, in which this question could be addressed, there was no indication of specialization on particular insect hosts, whereas several of the less common species may have been recorded from lepidopteran hosts for the first time. Across the subsets of the data, the prevalence of fungal infections generally remained below 5%. Our results are thus consistent with the idea that entomopathogenic fungi are always present in insect populations but rarely reach epizootic levels. The detected species richness shows that much is to be gained from mapping the diversity of fungal species associated with folivorous insects in natural populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...