Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 156(3): 854-61, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18783861

RESUMO

This study examined the influence of distance to the forest edge, forest type, and time on Cl-, SO4(2-), NO3(-), and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl-, SO4(2-), and NO3(-): the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.


Assuntos
Chuva Ácida , Poluentes Atmosféricos/análise , Nitrogênio/análise , Enxofre/análise , Árvores , Bélgica , Betula/fisiologia , Biodegradação Ambiental , Monitoramento Ambiental/métodos , Pinus/fisiologia , Quercus/fisiologia , Especificidade da Espécie
2.
Oecologia ; 153(3): 663-74, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17629749

RESUMO

Converting deciduous forests to coniferous plantations and vice versa causes environmental changes, but till now insight into the overall effect is lacking. This review, based on 38 case studies, aims to find out how coniferous and deciduous forests differ in terms of throughfall (+stemflow) deposition and seepage flux to groundwater. From the comparison of coniferous and deciduous stands at comparable sites, it can be inferred that deciduous forests receive less N and S via throughfall (+stemflow) deposition on the forest floor. In regions with relatively low open field deposition of atmospheric N (<10 kg N ha(-1) year(-1)), lower NH(4)(+) mean throughfall (+stemflow) deposition was, however, reported under conifers compared to deciduous forest, while in regions with high atmospheric N pollution (>10 kg N ha(-1) year(-1)), the opposite could be concluded. The higher the open field deposition of NH(4)(+), the bigger the difference between the coniferous and deciduous throughfall (+stemflow) deposition. Furthermore, it can be concluded that canopy exchange of K(+), Ca(2+) and Mg(2+) is on average higher in deciduous stands. The significantly higher stand deposition flux of N and S in coniferous forests is reflected in a higher soil seepage flux of NO(3)(-), SO(4)(2-), K(+), Ca(2+), Mg(2+) and Al(III). Considering a subset of papers for which all necessary data were available, a close relationship between throughfall (+stemflow) deposition and seepage was found for N, irrespective of the forest type, while this was not the case for S. This review shows that the higher input flux of N and S in coniferous forests clearly involves a higher seepage of NO(3)(-) and SO(4)(2-) and accompanying cations K(+), Ca(2+), Mg(2+) and Al(III) into the groundwater, making this forest type more vulnerable to acidification and eutrophication compared to the deciduous forest type.


Assuntos
Ecossistema , Chuva , Árvores , Água/análise , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...