Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6254, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069220

RESUMO

Comparing the performance of molecular and nanoscale luminophores and luminescent micro- and nanoparticles and estimating achievable signal amplitudes and limits of detection requires a standardizable intensity scale. This initiated the development of the relative MESF (number of molecules of equivalent soluble fluorochromes) and ERF (equivalent reference fluorophores) scales for flow cytometry and fluorescence microscopy. Both intensity scales rely on fluorescence intensity values assigned to fluorescent calibration beads by an intensity comparison to spectrally closely matching fluorophore solutions of known concentration using a spectrofluorometer. Alternatively, the luminophore or bead brightness (B) can be determined that equals the product of the absorption cross section (σa) at the excitation wavelength (σa(λex)) and the photoluminescence quantum yield (Φpl). Thereby, an absolute scale based on fundamental and measurable spectroscopic properties can be realized which is independent of particle size, material, and luminophore staining or labeling density and considers the sensitivity of the optical properties of luminophores to their environment. Aiming for establishing such a brightness scale for light-scattering dispersions of luminescent particles with sizes exceeding a few ten nanometers, we demonstrate how the brightness of quasi-monodisperse 25 nm, 100 nm, and 1 µm sized polystyrene particles (PSP), loaded with two different dyes in varying concentrations, can be obtained with a single custom-designed integrating sphere setup that enables the absolute determination of Φpl and transmittance and diffuse reflectance measurements. The resulting Φpl, σa(λex), imaginary parts of the refractive index, and calculated B values of these samples are given in dependence of the number of incorporated dye molecule per particle. Finally, a unitless luminescence efficiency (LE) is defined allowing for the direct comparison of luminescence efficiencies of particles with different sizes.

2.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578723

RESUMO

Suspensions of hemoglobin microparticles (HbMPs) are promising tools as oxygen therapeutics. For the approval of clinical studies extensive characterization of these HbMPs with a size of about 750 nm is required regarding physical properties, function, pharmaco-kinetics and toxicology. The standard absorbance measurements in blood gas analyzers require dissolution of red blood cells which does not work for HbMP. Therefore, we have developed a robust and rapid optical method for the quality and functionality control of HbMPs. It allows simultaneous determination of the portion of the two states of hemoglobin oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) as well as the content of methemoglobin (metHb). Based on the measurement of collimated transmission spectra between 300 nm and 800 nm, the average extinction cross section of HbMPs is derived. A numerical method is applied to determine the composition of the HbMPs based on their wavelength-dependent refractive index (RI), which is a superposition of the three different states of Hb. Thus, light-scattering properties, including extinction cross sections can be simulated for different compositions and sizes. By comparison to measured spectra, the relative concentrations of oxyHb, deoxyHb, metHb are accessible. For validation of the optically determined composition of the HbMPs, we used X-ray fluorescence spectrometry for the ratio of Fe(II) (oxyHb/deoxyHb) and Fe(III) (metHb). High accuracy density measurements served to access heme-free proteins, size was determined by dynamic light scattering and analytical centrifugation and the shape of the HbMPs was visualized by electron and atomic force microscopy.


Assuntos
Substitutos Sanguíneos/análise , Metemoglobina/análise , Animais , Bovinos , Humanos , Oxiemoglobinas/análise , Tamanho da Partícula , Espectrometria por Raios X
3.
Biomed Opt Express ; 10(9): 4531-4550, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565508

RESUMO

Light scattering by single cells is widely applied for flow cytometric differentiation of cells. However, even for human red blood cells (RBCs), which can be modeled as homogeneous dielectric particles, the potential of light scattering is not yet fully exploited. We developed a dedicated flow cytometer to simultaneously observe the forward scattering cross section (FSC) of RBCs for orthogonal laser beams with incident wave vectors k → 1 and k → 2 . At a wavelength λ = 632.8 nm , bimodal distributions are observed in two-dimensional dot plots of FSC( k → 1 ) vs. FSC( k → 2 ), which result from the RBCs' random orientation around the direction of flow, as well as from the distributions of their size and their optical properties. Typically, signals of 7.5 × 10 4 RBCs were analyzed. We actively oriented the cells in the cytometer to prove that orientation is the main cause of bimodality. In addition, we studied the wavelength dependence of FSC( k → 1 ) using λ = 413.1 nm , 457.9 nm , 488 nm and 632.8 nm, covering both weak and strong light absorption by the RBCs. Simulations of the light scattering by single RBCs were performed using the discrete dipole approximation (DDA) for a range of sizes, orientations and optical properties to obtain FSC distributions from RBC ensembles. Using the axisymmetric biconcave equilibrium shape of native RBCs, the experimentally observed distributions cannot be reproduced. If, however, an elongated shape model is employed that accounts for the stretching of the cell by hydrodynamic forces in the cytometer, the features of the strongly bimodal measured frequency distributions are reproduced by the simulation. Elongation ratios significantly greater than 1 in the range of 1.5 to 2.5 yield the best agreement between experiments and simulated data.

4.
Sci Rep ; 9(1): 4623, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874567

RESUMO

The knowledge of optical properties of biological cells is essential to interpret their interaction with light and to derive morphological information and parameters associated with cell function like the oxygen transport capacity of human red blood cells (RBCs). We present a method to determine the dependence between the refractive index (RI) of human RBCs and their intracellular hemoglobin (Hb) concentration from spectral extinction measurements of a cell suspension. The procedure is based on the analysis of the corresponding ensemble averaged extinction cross section [Formula: see text]. Thus far two complementary approaches have been taken to derive RIs of RBCs. The first one uses homogeneous macroscopic samples prepared by hemolysis for the destruction of the RBCs' membranes and subsequent centrifugation. A second approach is the determination of RIs of single intact cells by microscopic investigation. These techniques are limited to a few discrete wavelengths or a rather narrow wavelength range. In addition most of these techniques require additional information about the concentration dependence. In contrast, our approach yields the RI increment with Hb concentration of intact, reversibly isovolumetrically sphered, oxygenated RBCs over a wide wavelength range from 290 nm to 1100 nm from macroscopic measurements.


Assuntos
Eritrócitos/citologia , Refratometria/métodos , Contagem de Eritrócitos , Hemólise , Humanos , Luz , Refratometria/estatística & dados numéricos
5.
Appl Opt ; 57(2): 344-355, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29328184

RESUMO

A method is presented to infer simultaneously the wavelength-dependent real refractive index (RI) of the material of microspheres and their size distribution from extinction measurements of particle suspensions. To derive the averaged spectral optical extinction cross section of the microspheres from such ensemble measurements, we determined the particle concentration by flow cytometry to an accuracy of typically 2% and adjusted the particle concentration to ensure that perturbations due to multiple scattering are negligible. For analysis of the extinction spectra, we employ Mie theory, a series-expansion representation of the refractive index and nonlinear numerical optimization. In contrast to other approaches, our method offers the advantage to simultaneously determine size, size distribution, and spectral refractive index of ensembles of microparticles including uncertainty estimation.

6.
Appl Opt ; 55(31): 8951-8961, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27828301

RESUMO

The real part of the refractive index of aqueous solutions of human hemoglobin is computed from their absorption spectra in the wavelength range 250-1100 nm using the Kramers-Kronig (KK) relations, and the corresponding uncertainty analysis is provided. The strong ultraviolet (UV) and infrared absorbance of the water outside this spectral range were taken into account in a previous study employing KK relations. We improve these results by including the concentration dependence of the water absorbance as well as by modeling the deep UV absorbance of hemoglobin's peptide backbone. The two free parameters of the model for the deep UV absorbance are fixed by a global fit.

7.
Phys Rev E ; 93: 043306, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176427

RESUMO

We demonstrate that an inverse Monte Carlo approach allows one to reconstruct effective interaction potentials from real-space images. The method is exemplified on monomolecular ethanol-water films imaged with scanning force microscopy, which provides the spatial distribution of the molecules. Direct Monte Carlo simulations with the reconstructed potential allow for obtaining characteristics of the system which are unavailable in the experiment, such as the heat capacity of the monomolecularly thin film, and for a prediction of the critical temperature of the demixing transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...