Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 9: 857566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463948

RESUMO

Self-cleaving affinity tags, based on engineered intein protein domains, have been touted as a universal single step purification platform for tagless non-mAb proteins. These approaches provide all of the power and flexibility of tag-based affinity methods, but deliver a tagless target protein suitable for clinical applications without complex process development. This combination of features might accelerate and de-risk biopharmaceutical development by bridging early discovery to full-scale manufacturing under a single platform. Despite this profound promise, intein-based technologies have yet to reach their full potential. This review examines the evolution of intein-based purification methods in the light of several significant intein patents filed over the last 3 decades. Illustrated with actual key figures from each of the relevant patents, key advances are described with a focus on applications in basic research and biopharmaceutical production. Suggestions for extending intein-based purification systems to emerging therapies and non-protein applications are presented as concluding remarks.

2.
Bioorg Med Chem Lett ; 23(3): 687-92, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23265893

RESUMO

Receptor targeting ligands for imaging and/or therapy of cancer are limited by heterogeneity of receptor expression by tumor cells, both inter-patient and intra-patient. It is often more important for imaging agents to identify local and distant spread of disease than it is to identify a specific receptor presence. Two natural hormone peptide receptors, GRPR and Y1, are specifically interesting because expression of GRPR, Y1 or both is up-regulated in most breast cancers. We describe here the design and development of a new heterobivalent peptide ligand, truncated bombesin (t-BBN)/BVD15-DO3A, for dual-targeting of GRPR and Y1, and validation of its dual binding capability. Such a probe should be useful in imaging cells, tissues and tumors that are GRPR and/or Y1 positive and should target radioisotopes, for example, (68)Ga and/or (177)Lu, to more tumors cells than single GRPR or Y1 targeted probes. A GRP targeting ligand, J-G-Abz4-QWAVGHLM-NH(2) (J-G-Abz4-t-BBN), and an Y1 targeting ligand, INP-K[ε-J-(α-DO3A-ε-DGa)-K]-YRLRY-NH(2)([ε-J-(α-DO3A-ε-DGa)-K]-BVD-15), were synthesized and coupled to produce the heterobivalent ligand, t-BBN/BVD15-DO3A. Competitive displacement binding assays using t-BBN/BVD15-DO3A against (125)I-Tyr(4)-BBN yielded an IC(50) value of 18 ± 0.7 nM for GRPR in T-47D cells, a human breast cancer cell line. A similar assay using t-BBN/BVD15-DO3A against porcine (125)I-NPY showed IC(50) values of 80 ± 11 nM for Y1 receptor in MCF7 cells, another human breast cancer cell line. In conclusion, it is possible to construct a single DO3A chelate containing probe that can target both GRPR and Y1 on human tumor cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ligantes , Peptídeos/metabolismo , Receptores da Bombesina/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Feminino , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Peptídeos/genética , Ligação Proteica , Receptores da Bombesina/genética , Receptores de Neuropeptídeo Y/genética , Suínos
3.
Environ Toxicol ; 28(4): 179-89, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21544920

RESUMO

To study the effects and possible mechanisms of suspected endocrine disrupting compounds (EDCs), a wide variety of assays have been developed. In this work, we generated engineered Escherichia coli biosensor strains that incorporate the ligand-binding domains (LBDs) of the ß-subtype estrogen receptors (ERß) from Solea solea (sole), and Sus scrofa (pig). These strains indicate the presence of ligands for these receptors by changes in growth phenotype, and can differentiate agonist from antagonist and give a rough indication of binding affinity via dose-response curves. The resulting strains were compared with our previously reported Homo sapiens ERß biosensor strain. In initial tests, all three of the strains correctly identified estrogenic test compounds with a high degree of certainly (Z' typically greater than 0.5), including the weakly binding test compound bisphenol A (BPA) (Z' ≈ 0.1-0.3). The modular design of the sensing element in this strain allows quick development of new species-based biosensors by simple LBD swapping, suggesting its use in initial comparative analysis of EDC impacts across multiple species. Interestingly, the growth phenotypes of the biosensor strains indicate similar binding for highly estrogenic control compounds, but suggest differences in ligand binding for more weakly binding EDCs.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos/toxicidade , Escherichia coli/genética , Receptor beta de Estrogênio/genética , Linguados/metabolismo , Suínos/metabolismo , Animais , Compostos Benzidrílicos/toxicidade , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Linguados/genética , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligantes , Fenóis/toxicidade , Estrutura Terciária de Proteína , Especificidade da Espécie , Suínos/genética
4.
FEBS Open Bio ; 2: 247-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23667826

RESUMO

Subtype-selective thyromimetics have potential as new pharmaceuticals for the prevention or treatment of heart disease, high LDL cholesterol and obesity, but there are only a few methods that can detect agonistic behavior of TR-active compounds. Among these are the rat pituitary GH3 cell assay and transcriptional activation assays in engineered yeast and mammalian cells. We report the construction and validation of a newly designed TRα-1 bacterial biosensor, which indicates the presence of thyroid active compounds through their impacts on the growth of an engineered Escherichia coli strain in a simple defined medium. This biosensor couples the configuration of a hormone receptor ligand-binding domain to the activity of a thymidylate synthase reporter enzyme through an engineered allosteric fusion protein. The result is a hormone-dependent growth phenotype in the expressing E. coli cells. This sensor can be combined with our previously published TRß-1 biosensor to detect potentially therapeutic subtype-selective compounds such as GC-1 and KB-141. To demonstrate this capability, we determined the half-maximal effective concentration (EC50) for the compounds T3, Triac, GC-1 and KB-141 using our biosensors, and determined their relative potency in each biosensor strain. Our results are similar to those reported by mammalian cell reporter gene assays, confirming the utility of our assay in identifying TR subtype-selective therapeutics. This biosensor thus provides a high-throughput, receptor-specific, and economical method (less than US$ 0.10 per well at laboratory scale) for identifying important therapeutics against these targets.

5.
Biosens Bioelectron ; 29(1): 132-9, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21893405

RESUMO

The peroxisome proliferator-activated receptor gamma (PPARγ or PPARG) belongs to the nuclear receptor superfamily, and is a potential drug target for a variety of diseases. In this work, we constructed a series of bacterial biosensors for the identification of functional PPARγ ligands. These sensors entail modified Escherichia coli cells carrying a four-domain fusion protein, comprised of the PPARγ ligand binding domain (LBD), an engineered mini-intein domain, the E. coli maltose binding protein (MBD), and a thymidylate synthase (TS) reporter enzyme. E. coli cells expressing this protein exhibit hormone ligand-dependent growth phenotypes. Unlike our published estrogen (ER) and thyroid receptor (TR) biosensors, the canonical PPARγ biosensor cells displayed pronounced growth in the absence of ligand. They were able to distinguish agonists and antagonists, however, even in the absence of agonist. To improve ligand sensitivity of this sensor, we attempted to engineer and optimize linker peptides flanking the PPARγ LBD insertion point. Truncation of the original linkers led to decreased basal growth and significantly enhanced ligand sensitivity of the PPARγ sensor, while substitution of the native linkers with optimized G(4)S (Gly-Gly-Gly-Gly-Ser) linkers further increased the sensitivity. Our studies demonstrate that the properties of linkers, especially the C-terminal linker, greatly influence the efficiency and fidelity of the allosteric signal induced by ligand binding. Our work also suggests an approach to increase allosteric behavior in this multidomain sensor protein, without modification of the functional LBD.


Assuntos
Técnicas Biossensoriais/métodos , PPAR gama/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Humanos , Inteínas/genética , Ligantes , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , PPAR gama/genética , Engenharia de Proteínas/métodos , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...