Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(7): 1399-1407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38780830

RESUMO

PURPOSE: Intraoperative cone-beam CT imaging enables 3D validation of implant positioning and fracture reduction for orthopedic and trauma surgeries. However, the emergence of metal artifacts, especially in the vicinity of metallic objects, severely degrades the clinical value of the imaging modality. In previous works, metal artifact avoidance (MAA) methods have been shown to reduce metal artifacts by adapting the scanning trajectory. Yet, these methods fail to translate to clinical practice due to remaining methodological constraints and missing workflow integration. METHODS: In this work, we propose a method to compute the spatial distribution and calibrated strengths of expected artifacts for a given tilted circular trajectory. By visualizing this as an overlay changing with the C-Arm's tilt, we enable the clinician to interactively choose an optimal trajectory while factoring in the procedural context and clinical task. We then evaluate this method in a realistic human cadaver study and compare the achieved image quality to acquisitions optimized using global metrics. RESULTS: We assess the effectiveness of the compared methods by evaluation of image quality gradings of depicted pedicle screws. We find that both global metrics as well as the proposed visualization of artifact distribution enable a drastic improvement compared to standard non-tilted scans. Furthermore, the novel interactive visualization yields a significant improvement in subjective image quality compared to the state-of-the-art global metrics. Additionally we show that by formulating an imaging task, the proposed method allows to selectively optimize image quality and avoid artifacts in the region of interest. CONCLUSION: We propose a method to spatially resolve predicted artifacts and provide a calibrated measure for artifact strength grading. This interactive MAA method proved practical and effective in reducing metal artifacts in the conducted cadaver study. We believe this study serves as a crucial step toward clinical application of an MAA system to improve image quality and enhance the clinical validation of implant placement.


Assuntos
Artefatos , Cadáver , Tomografia Computadorizada de Feixe Cônico , Metais , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Imageamento Tridimensional/métodos , Parafusos Pediculares
2.
Eur Spine J ; 33(6): 2304-2313, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38635086

RESUMO

BACKGROUND CONTEXT: Studies have shown biomechanical superiority of cervical pedicle screw placement over other techniques. However, accurate placement is challenging due to the inherent risk of neurovascular complications. Navigation technology based on intraoperative 3D imaging allows highly accurate screw placement, yet studies specifically investigating screw placement in patients with traumatic atlantoaxial injuries are scarce. The aim of this study was to compare atlantoaxial screw placement as treatment of traumatic instabilities using iCT-based navigation or fluoroscopic-guidance with intraoperative 3D control scans. METHODS: This was a retrospective review of patients with traumatic atlantoaxial injuries treated operatively with dorsal stabilization of C1 and C2. Patients were either assigned to the intraoperative navigation or fluoroscopic-guidance group. Screw accuracy, procedure time, and revisions were compared. RESULTS: Seventy-eight patients were included in this study with 51 patients in the navigation group and 27 patients in the fluoroscopic-guidance group. In total, 312 screws were placed in C1 and C2. Screw accuracy was high in both groups; however, pedicle perforations > 1 mm occurred significantly more often in the fluoroscopic-guidance group (P = 0.02). Procedure time was on average 23 min shorter in the navigation group (P = 0.02). CONCLUSIONS: This study contributes to the available data showing that navigated atlantoaxial screw placement proves to be feasible as well as highly accurate compared to the fluoroscopic-guidance technique without prolonging the time needed for surgery. When comparing these data with other studies, the application of different classification systems for assessment of screw accuracy should be considered.


Assuntos
Articulação Atlantoaxial , Vértebras Cervicais , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos Retrospectivos , Fluoroscopia/métodos , Vértebras Cervicais/cirurgia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/lesões , Articulação Atlantoaxial/cirurgia , Articulação Atlantoaxial/diagnóstico por imagem , Articulação Atlantoaxial/lesões , Cirurgia Assistida por Computador/métodos , Parafusos Ósseos , Parafusos Pediculares , Idoso , Traumatismos da Coluna Vertebral/cirurgia , Traumatismos da Coluna Vertebral/diagnóstico por imagem , Adulto Jovem , Resultado do Tratamento , Instabilidade Articular/cirurgia , Instabilidade Articular/diagnóstico por imagem
3.
Brain Spine ; 4: 102769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510605

RESUMO

Introduction: Fractures of the thoracolumbar junction are the most common vertebral fractures and can require surgical treatment. Several studies have shown that the accuracy of pedicle screw placement can be improved by the use of 3D-navigation. Still only few studies have focused on the use of navigation in traumatic spine injuries. Research question: The aim of this study was to compare the screw placement accuracy and radiation exposure for 3D-navigated and fluoroscopy-guided percutaneous pedicle screw placement in traumatic fractures of the thoracolumbar junction. Materials and methods: In this single-center study 25 patients undergoing 3D-navigated percutaneous pedicle screw placement for traumatic fractures of the thoracolumbar junction (T12-L2) were compared to a control group of 25 patients using fluoroscopy. Screw accuracy was determined in postoperative CT-scans using the Gertzbein-Robbins classification system. Additionally, duration of surgery, dose area product, fluoroscopy time and intraoperative complications were compared between the groups. Results: The accuracy of 3D-navigated percutaneous pedicle screw placement was 92.66 % while an accuracy of 88.08 % was achieved using standard fluoroscopy (p = 0.19). The fluoroscopy time was significantly less in the navigation group compared to the control group (p = 0.0002). There were no significant differences in radiation exposure, duration of surgery or intraoperative complications between the groups. Discussion and conclusion: The results suggest that 3D-navigation facilitates higher accuracy in percutaneous pedicle screw placement of traumatic fractures of the thoracolumbar junction, although limitations should be considered. In this study 3D-navigation did not increase fluoroscopy time, while radiation exposure and surgery time were comparable.

4.
J Orthop Surg Res ; 18(1): 924, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38044441

RESUMO

BACKGROUND: Intraoperative 3D imaging using cone-beam CT (CBCT) provides improved assessment of implant position and reduction in spine surgery, is used for navigated surgical techniques, and therefore leads to improved quality of care. However, in some cases the image quality is not sufficient to correctly assess pedicle screw position and reduction, especially due to metal artifacts. The aim of this study was to investigate whether changing the acquisition trajectory of the CBCT in relation to the pedicle screw position during dorsal instrumentation of the spine can reduce metal artifacts and consequently improve image quality as well as clinical assessability on the artificial bone model. METHODS: An artificial bone model was instrumented with pedicle screws in the thoracic and lumbar spine region (Th10 to L5). Then, the acquisition trajectory of the CBCT (Cios Spin, Siemens, Germany) to the pedicle screws was systematically changed in 5° steps in angulation (- 30° to + 30°) and swivel (- 30° to + 30°). Subsequently, radiological evaluation was performed by three blinded, qualified raters on image quality using 9 questions (including anatomical structures, implant position, appearance of artifacts) with a score (1-5 points). For statistical evaluation, the image quality of the different acquisition trajectories was compared to the standard acquisition trajectory and checked for significant differences. RESULTS: The angulated acquisition trajectory increased the score for subjective image quality (p < 0.001) as well as the clinical assessability of pedicle screw position (p < 0.001) highly significant with particularly strong effects on subjective image quality in the vertebral pedicle region (d = 1.06). Swivel of the acquisition trajectory significantly improved all queried domains of subjective image quality (p < 0.001) as well as clinical assessability of pedicle screw position (p < 0.001). The data show that maximizing the angulation or swivel angle toward 30° provides the best tested subjective image quality. Angulation and swivel of the acquisition trajectory result in a clinically relevant improvement in image quality in intraoperative 3D imaging (CBCT) during dorsal instrumentation of the spine.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Tomografia Computadorizada de Feixe Cônico Espiral , Cirurgia Assistida por Computador , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Tomografia Computadorizada de Feixe Cônico , Imageamento Tridimensional/métodos , Cirurgia Assistida por Computador/métodos
5.
Brain Spine ; 3: 101780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020982

RESUMO

Introduction: There is ample evidence that higher accuracy can be achieved in thoracolumbar pedicle screw placement by using spinal navigation. Still, to date, the evidence regarding the influence of the use of navigation on the screw diameter to pedicle width ratio remains limited. Research question: The aim of this study was to investigate the implications of navigation in thoracolumbar pedicle screw placement not only on screw accuracy, but on the screw diameter to pedicle width ratio as well. Material and methods: In this single-center single-surgeon study, 45 Patients undergoing navigated thoracolumbar pedicle screw placement were prospectively included. The results were compared with a matched comparison group of patients in which screw placement was performed under fluoroscopic guidance. The screw accuracy and the screw diameter to pedicle width ratio of every screw were compared between the groups. Results: Screw accuracy was significantly higher in the navigation group compared to the fluoroscopic guidance group, alongside with a significant increase of the screw diameter to pedicle width ratio by approximately 10%. In addition, both the intraoperative radiation dose and the operating time tended to be lower in the study group. Conclusion: This study was able to show that navigated thoracolumbar pedicle screw placement not only increases the accuracy of screw placement but also facilitates the selection of the adequate screw sizes, which according to the literature has positive effects on fixation strength. Meanwhile, the use of navigation did not negatively affect the time needed for surgery or the patient's intraoperative exposure to radiation.

6.
BMC Musculoskelet Disord ; 24(1): 752, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742007

RESUMO

BACKGROUND: Studies have shown that pedicle screw placement using navigation can potentially reduce radiation exposure of surgical personnel compared to conventional methods. Spinal navigation is based on an interaction of a navigation software and 3D imaging. The 3D image data can be acquired using different imaging modalities such as iCT and CBCT. These imaging modalities vary regarding acquisition technique and field of view. The current literature varies greatly in study design, in form of dose registration, as well as navigation systems and imaging modalities analyzed. Therefore, the aim of this study was a standardized comparison of three navigation and imaging system combinations in an experimental setting in an artificial spine model. METHODS: In this experimental study dorsal instrumentation of the thoracolumbar spine was performed using three imaging/navigation system combinations. The system combinations applied were the iCT/Curve, cCBCT/Pulse and oCBCT/StealthStation. Referencing scans were obtained with each imaging modality and served as basis for the respective navigation system. In each group 10 artificial spine models received bilateral dorsal instrumentation from T11-S1. 2 referencing and control scans were acquired with the CBCTs, since their field of view could only depict up to five vertebrae in one scan. The field of view of the iCT enabled the depiction of T11-S1 in one scan. After instrumentation the region of interest was scanned again for evaluation of the screw position, therefore only one referencing and one control scan were obtained. Two dose meters were installed in a spine bed ventral of L1 and S1. The dose measurements in each location and in total were analyzed for each system combination. Time demand regarding screw placement was also assessed for all system combinations. RESULTS: The mean radiation dose in the iCT group measured 1,6 ± 1,1 mGy. In the cCBCT group the mean was 3,6 ± 0,3 mGy and in the oCBCT group 10,3 ± 5,7 mGy were measured. The analysis of variance (ANOVA) showed a significant (p < 0.0001) difference between the three groups. The multiple comparisions by the Kruskall-Wallis test showed no significant difference for the comparison of iCT and cCBCT (p1 = 0,13). Significant differences were found for the direct comparison of iCT and oCBCT (p2 < 0,0001), as well as cCBCT and oCBCT (p3 = 0,02). Statistical analysis showed that significantly (iCT vs. oCBCT p = 0,0434; cCBCT vs. oCBCT p = 0,0083) less time was needed for oCBCT based navigated pedicle screw placement compared to the other system combinations (iCT vs. cCBCT p = 0,871). CONCLUSION: Under standardized conditions oCBCT navigation demanded twice as much radiation as the cCBCT for the same number of scans, while the radiation exposure measured for the iCT and cCBCT for one scan was comparable. Yet, time effort was significantly less for oCBCT based navigation. However, for transferability into clinical practice additional studies should follow evaluating parameters regarding feasibility and clinical outcome under standardized conditions.


Assuntos
Parafusos Pediculares , Exposição à Radiação , Humanos , Diagnóstico por Imagem , Exposição à Radiação/prevenção & controle , Análise de Variância , Frequência Cardíaca
7.
BMC Med Imaging ; 22(1): 181, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261814

RESUMO

BACKGROUND: In syndesmotic injuries, incorrect reduction leads to early arthrosis of the ankle joint. Being able to analyze the reduction result is therefore crucial for obtaining an anatomical reduction. Several studies that assess fibular rotation in the incisura have already been published. The aim of the study was to validate measurement methods that use cone beam computed tomography imaging to detect rotational malpositions of the fibula in a standardized specimen model. METHODS: An artificial Maisonneuve injury was created on 16 pairs of fresh-frozen lower legs. Using a stable instrument, rotational malpositions of 5, 10, and 15° internal and external rotation were generated. For each malposition of the fibula, a cone beam computed tomography scan was performed. Subsequently, the malpositions were measured and statistically evaluated with t-tests using two measuring methods: angle (γ) at 10 mm proximal to the tibial joint line and the angle (δ) at 6 mm distal to the talar joint line. RESULTS: Rotational malpositions of ≥ 10° could be reliably displayed in the 3D images using the measuring method with angle δ. For angle γ significant results could only be displayed for an external rotation malposition of 15°. CONCLUSIONS: Clinically relevant rotational malpositions of the fibula in comparison with an uninjured contralateral side can be reliably detected using intraoperative 3D imaging with a C-arm cone beam computed tomography. This may allow surgeons to achieve better reduction of fibular malpositions in the incisura tibiofibularis.


Assuntos
Traumatismos do Tornozelo , Fíbula , Humanos , Fíbula/diagnóstico por imagem , Fíbula/lesões , Traumatismos do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/diagnóstico por imagem , Tíbia , Tomografia Computadorizada de Feixe Cônico
8.
Medicina (Kaunas) ; 58(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36013578

RESUMO

Background and Objectives: Navigated pedicle screw placement is becoming increasingly popular, as it has been shown to reduce the rate of screw misplacement. We present our intraoperative workflow and initial experience in terms of safety, efficiency, and clinical feasibility with a novel system for a 3D C-arm cone beam computed-tomography-based navigation of thoracolumbar pedicle screws. Materials and Methods: The first 20 consecutive cases of C-arm cone beam computed-tomography-based percutaneous pedicle screw placement using a novel navigation system were included in this study. Procedural data including screw placement time and patient radiation dose were prospectively collected. Final pedicle screw accuracy was assessed using the Gertzbein-Robbins grading system. Results: In total, 156 screws were placed. The screw accuracy was 94.9%. All the pedicle breaches occurred on the lateral pedicle wall, and none caused clinical complications. On average, a time of 2:42 min was required to place a screw. The mean intraoperative patient radiation exposure was 7.46 mSv. Conclusions: In summary, the investigated combination of C-arm CBCT-based navigation proved to be easy to implement and highly reliable. It facilitates the accurate and efficient percutaneous placement of pedicle screws in the thoracolumbar spine. The careful use of intraoperative imaging maintains the intraoperative radiation exposure to the patient at a moderate level.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Cirurgia Assistida por Computador , Tomografia Computadorizada de Feixe Cônico , Humanos , Imageamento Tridimensional/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Fusão Vertebral/métodos , Cirurgia Assistida por Computador/métodos
9.
Sci Rep ; 12(1): 12344, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853991

RESUMO

3D-navigated pedicle screw placement is increasingly performed as the accuracy has been shown to be considerably higher compared to fluoroscopy-guidance. While different imaging and navigation devices can be used, there are few studies comparing these under similar conditions. Thus, the objective of this study was to compare the accuracy of two combinations most used in the literature for spinal navigation and a recently approved combination of imaging device and navigation system. With each combination of imaging system and navigation interface, 160 navigated screws were placed percutaneously in spine levels T11-S1 in ten artificial spine models. 470 screws were included in the final evaluation. Two blinded observers classified screw placement according to the Gertzbein Robbins grading system. Grades A and B were considered acceptable and Grades C-E unacceptable. Weighted kappa was used to calculate reliability between the observers. Mean accuracy was 94.9% (149/157) for iCT/Curve, 97.5% (154/158) for C-arm CBCT/Pulse and 89.0% for CBCT/StealthStation (138/155). The differences between the different combinations were not statistically significant except for the comparison of C-arm CBCT/Pulse and CBCT/StealthStation (p = 0.003). Relevant perforations of the medial pedicle wall were only seen in the CBCT group. Weighted interrater reliability was found to be 0.896 for iCT, 0.424 for C-arm CBCT and 0.709 for CBCT. Under quasi-identical conditions, higher screw accuracy was achieved with the combinations iCT/Curve and C-arm CBCT/Pulse compared with CBCT/StealthStation. However, the exact reasons for the difference in accuracy remain unclear. Weighted interrater reliability for Gertzbein Robbins grading was moderate for C-arm CBCT, substantial for CBCT and almost perfect for iCT.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Cirurgia Assistida por Computador , Fluoroscopia/métodos , Reprodutibilidade dos Testes , Fusão Vertebral/métodos , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...