Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 165(5): 1467-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21838752

RESUMO

BACKGROUND AND PURPOSE: TASK1 (K(2P)3.1) two-pore-domain K(+) channels contribute substantially to the resting membrane potential in human pulmonary artery smooth muscle cells (hPASMC), modulating vascular tone and diameter. The endothelin-1 (ET-1) pathway mediates vasoconstriction and is an established target of pulmonary arterial hypertension (PAH) therapy. ET-1-mediated inhibition of TASK1 currents in hPASMC is implicated in the pathophysiology of PAH. This study was designed to elucidate molecular mechanisms underlying inhibition of TASK1 channels by ET-1. EXPERIMENTAL APPROACH: Two-electrode voltage clamp and whole-cell patch clamp electrophysiology was used to record TASK1 currents from hPASMC and Xenopus oocytes. KEY RESULTS: ET-1 inhibited TASK1-mediated I(KN) currents in hPASMC, an effect attenuated by Rho kinase inhibition with Y-27632. In Xenopus oocytes, TASK1 current reduction by ET-1 was mediated by endothelin receptors ET(A) (IC(50) = 0.08 nM) and ET(B) (IC(50) = 0.23 nM) via Rho kinase signalling. TASK1 channels contain two putative Rho kinase phosphorylation sites, Ser(336) and Ser(393) . Mutation of Ser(393) rendered TASK1 channels insensitive to ET(A) - or ET(B)-mediated current inhibition. In contrast, removal of Ser(336) selectively attenuated ET(A) -dependent TASK1 regulation without affecting the ET(B) pathway. CONCLUSIONS AND IMPLICATIONS: ET-1 regulated vascular TASK1 currents through ET(A) and ET(B) receptors mediated by downstream activation of Rho kinase and direct channel phosphorylation. The Rho kinase pathway in PASMC may provide a more specific therapeutic target in pulmonary arterial hypertension treatment.


Assuntos
Endotelina-1/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Animais , Células Cultivadas , Feminino , GTP Fosfo-Hidrolases/metabolismo , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Mutação , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Canais de Potássio de Domínios Poros em Tandem/genética , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiologia , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Transdução de Sinais , Vasoconstrição/genética , Vasoconstrição/fisiologia , Xenopus laevis , Quinases Associadas a rho/antagonistas & inibidores
2.
Br J Pharmacol ; 163(5): 1099-110, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21410455

RESUMO

BACKGROUND AND PURPOSE: Human K(2P) 3.1 (TASK1) channels represent potential targets for pharmacological management of atrial fibrillation. K(2P) channels control excitability by stabilizing membrane potential and by expediting repolarization. In the heart, inhibition of K(2P) currents by class III antiarrhythmic drugs results in action potential prolongation and suppression of electrical automaticity. Carvedilol exerts antiarrhythmic activity and suppresses atrial fibrillation following cardiac surgery or cardioversion. The objective of this study was to investigate acute effects of carvedilol on human K(2P) 3.1 (hK(2P) 3.1) channels. EXPERIMENTAL APPROACH: Two-electrode voltage clamp and whole-cell patch clamp electrophysiology was used to record hK(2P) 3.1 currents from Xenopus oocytes, Chinese hamster ovary (CHO) cells and human pulmonary artery smooth muscle cells (hPASMC). KEY RESULTS: Carvedilol concentration-dependently inhibited hK(2P) 3.1 currents in Xenopus oocytes (IC(50) = 3.8 µM) and in mammalian CHO cells (IC(50) = 0.83 µM). In addition, carvedilol sensitivity of native I(K2P3.1) was demonstrated in hPASMC. Channels were blocked in open and closed states in frequency-dependent fashion, resulting in resting membrane potential depolarization by 7.7 mV. Carvedilol shifted the current-voltage (I-V) relationship by -6.9 mV towards hyperpolarized potentials. Open rectification, characteristic of K(2P) currents, was not affected. CONCLUSIONS AND IMPLICATIONS: The antiarrhythmic drug carvedilol targets hK(2P) 3.1 background channels. We propose that cardiac hK(2P) 3.1 current blockade may suppress electrical automaticity, prolong atrial refractoriness and contribute to the class III antiarrhythmic action in patients treated with the drug.


Assuntos
Carbazóis/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Propanolaminas/farmacologia , Animais , Células CHO , Carvedilol , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Músculo Liso Vascular/citologia , Oócitos , Técnicas de Patch-Clamp , Artéria Pulmonar/citologia , Transfecção , Xenopus laevis
3.
Br J Pharmacol ; 154(8): 1680-90, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18516069

RESUMO

BACKGROUND AND PURPOSE: Two-pore-domain potassium (K2P) channels mediate potassium background (or 'leak') currents, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Inhibition of K2P currents permits membrane potential depolarization and excitation. As expected for key regulators of excitability, leak channels are under tight control from a plethora of stimuli. Recently, signalling via protein tyrosine kinases (TKs) has been implicated in ion channel modulation. The objective of this study was to investigate TK regulation of K2P channels. EXPERIMENTAL APPROACH: The two-electrode voltage clamp technique was used to record K2P currents in Xenopus oocytes. In addition, K2P channels were studied in Chinese hamster ovary (CHO) cells using the whole-cell patch clamp technique. KEY RESULTS: Here, we report inhibition of human K2P3.1 (TASK-1) currents by the TK antagonist, genistein, in Xenopus oocytes (IC50=10.7 microM) and in CHO cells (IC50=12.3 microM). The underlying molecular mechanism was studied in detail. hK2P3.1 was not affected by genistin, an inactive analogue of genistein. Perorthovanadate, an inhibitor of tyrosine phosphatase activity, reduced the inhibitory effect of genistein. Current reduction was voltage independent and did not require channel protonation at position H98 or phosphorylation at the single TK phosphorylation site, Y323. Among functional hK2P family members, genistein also reduced K2P6.1 (TWIK-2), K2P9.1 (TASK-3) and K2P13.1 (THIK-1) currents, respectively. CONCLUSIONS AND IMPLICATIONS: Modulation of K2P channels by the TK inhibitor, genistein, represents a novel molecular mechanism to alter background K+ currents.


Assuntos
Genisteína/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Eletrofisiologia , Genisteína/administração & dosagem , Humanos , Concentração Inibidora 50 , Proteínas do Tecido Nervoso/metabolismo , Oócitos , Técnicas de Patch-Clamp , Fosforilação , Canais de Potássio de Domínios Poros em Tandem/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Transdução de Sinais , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...