Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Entomol Res ; 107(2): 208-216, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27628311

RESUMO

The bird cherry ermine moth, Yponomeuta evonymellus L., is considered an obligatory monophagous insect pest that feeds only on native European Prunus padus L. In recent years, however, increased larval feeding on alien P. serotina Ehrh. has been observed. In both species, general defoliation is extensive for shade grown trees, whereas it is high in P. padus, but very low in P. serotina, when trees are grown in full light conditions. The aim of the present study was to identify how the plant host species and light conditions affect the performance of Y. evonymellus. The influence of host species and light condition on their growth and development, characterized by the parameters of pupation, adult eclosion, body mass, potential fecundity, and wing size, was measured in a 2 × 2 experimental design (two light treatments, two hosts). In comparison with high light (HL) conditions, a greater percentage of pupation and a longer period and less dynamic adult emerge was observed under low light (LL) conditions. The effect of host species on these parameters was not significant. In contrast, mass, fecundity and all of the studied wing parameters were higher in larvae that grazed on P. padus than on P. serotina. Similarly the same parameters were also higher on shrubs in HL as compared with those grown under LL conditions. In general, light conditions, rather than plant species, were more often and to a greater extent, responsible for differences in the observed parameters of insect development and potential fecundity.


Assuntos
Herbivoria , Mariposas/fisiologia , Prunus , Animais , Feminino , Fertilidade/efeitos da radiação , Cadeia Alimentar , Espécies Introduzidas , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/efeitos da radiação , Luz , Masculino , Mariposas/crescimento & desenvolvimento , Mariposas/efeitos da radiação , Prunus/crescimento & desenvolvimento , Especificidade da Espécie , Árvores/crescimento & desenvolvimento
2.
New Phytol ; 140(2): 239-249, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33862847

RESUMO

Field-grown trees of Alnus incana (L.) Moench, Alnus glutinosa (L.) Geartner and Betula pendula Roth displayed pronounced differences in responses of light-saturated net photosynthesis (Asat ) to herbivory by the alder beetle (Agelastica alni L., Galerucinae), a specialized insect which primarily defoliates alders. We found that photosynthetic rates of grazed leaves increased following herbivory in Alnus but not in Betula. Area- and mass-based Asat of grazed leaves declined linearly with increasing amount of leaf perforation in B. pendula, by as much as 57%. By contrast Alnus glutinosa and Alnus incana increased area-based rates of Asat by 10-50% at all levels of leaf grazing. Given increased Asat in the remaining portion of grazed leaves, a net reduction in photosynthesis per leaf occurred only when the proportion of leaf area grazed exceeded 40% for Alnus incana and 23% for Alnus glutinosa. Since vein perforation by Agelastica alni was observed much more frequently in leaves of Betula than in Alnus, we hypothesized that declining Asat in herbivorized Betula was related to this disruption of water transport. A field experiment with artificial leaf perforation demonstrated a greater decline in Asat in vein-perforated Betula leaves than perforated leaves with midrib veins intact. However, regardless of leaf perforation regime, birch never showed post-perforation increases in Asat . In all species, rates of transpiration of grazed leaves linearly increased and water-use efficiency decreased with increased amount of leaf perforation. In grazed Alnus incana leaves, increasing leaf area consumption by Agelastica alni resulted in an increase of total phenols, a reduction in starch content and no changes in nitrogen concentration in the remaining portion. The increase in photosynthesis in Alnus incana might be related to declining leaf starch concentration or increasing stomatal conductance, but was unrelated to leaf nitrogen concentration. These gas exchange and leaf chemistry measurements suggest that in contrast to B. pendula, Alnus incana and Alnus glutinosa, which are the major host species for Agelastica alni, possess leaf-level physiological adaptations and defence mechanisms which can attenuate negative effects of herbivory by the alder leaf-beetle.

3.
Tree Physiol ; 17(11): 697-703, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14759894

RESUMO

Pollution often causes visible symptoms of foliar injury. The injury is sometimes associated with an increase in the accessibility of toxic elements to plants as a result of acidification of the soil. We investigated the distribution of elements (N, P, K, Ca, Mg, Mn, S, Fe, B, Cu, Zn, Al, F, Pb, Cd, Cr, Ni and Co) in healthy current-year needles of Scots pine (Pinus sylvestris L.) growing at an unpolluted control site and at a site polluted mainly by SO(2), HF and Al(3+) from a fertilizer factory established in 1917. Needles from both sites were sampled before the appearance of visible injury and cut into five sections of equal length (tip, base and three middle parts). The mean concentrations of major nutrients were 20-30% lower in needles at the polluted site than in needles at the control site, whereas the concentrations of aluminum and fluorine were higher in needles at the polluted site. An increase in concentration from needle base to tip was detected for N, Fe, B, and Al at both sites and for Mn only at the polluted site. Fluoride accumulated in the tips of needles only at the polluted site, which could explain the necroses of needle tips at this site. The distribution of elements along the length of the needles was influenced by pollution, element mobility and the distal accumulation of toxic elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...