Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(9): 091802, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524459

RESUMO

We show that coherent harmonic focusing provides an efficient mechanism to boost all-optical signatures of quantum vacuum nonlinearity in the collision of high-intensity laser fields, thereby offering a promising route to their first experimental detection. Assuming two laser pulses of given parameters at our disposal, we demonstrate a substantial increase of the number of signal photons measurable in experiments where one of the pulses undergoes coherent harmonic focusing before it collides with the fundamental-frequency pulse. Imposing a quantitative criterion to discern the signal photons from the background of the driving laser photons and accounting for the finite purity of polarization filtering, we find that signal photons arising from inelastic scattering processes constitute a promising signature. By contrast, quasielastic contributions which are conventionally assumed to form the most prospective signal remain background dominated. Our findings may result in a paradigm shift concerning which photonic signatures of quantum vacuum nonlinearity are accessible in experiment.

2.
Philos Trans A Math Phys Eng Sci ; 376(2114)2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358357

RESUMO

We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'.

3.
Opt Lett ; 42(24): 5246-5249, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29240184

RESUMO

Noncollinear pulse characterization methods can be applied to over-octave spanning waveforms, but geometrical effects in the nonlinear medium such as beam smearing and critical sensitivity to beam alignment hinder their accurate application. Here, a method is introduced for the temporal and spatial characterization of two pulses by interferometric, spectrally resolved imaging of self-diffraction. Geometrical effects are resolved by the method and, therefore, do not limit the accuracy. Two methods for quantitative pulse retrieval are presented. One method is analytical and very fast; the other method is iterative and more robust if applied to noisy data.

4.
Phys Rev Lett ; 116(21): 211302, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27284643

RESUMO

Weinberg's asymptotic safety scenario provides an elegant mechanism to construct a quantum theory of gravity within the framework of quantum field theory based on a non-Gaussian fixed point of the renormalization group flow. In this work we report novel evidence for the validity of this scenario, using functional renormalization group techniques to determine the renormalization group flow of the Einstein-Hilbert action supplemented by the two-loop counterterm found by Goroff and Sagnotti. The resulting system of beta functions comprises three scale-dependent coupling constants and exhibits a non-Gaussian fixed point which constitutes the natural extension of the one found at the level of the Einstein-Hilbert action. The fixed point exhibits two ultraviolet attractive and one repulsive direction supporting a low-dimensional UV-critical hypersurface. Our result vanquishes the long-standing criticism that asymptotic safety will not survive once a "proper perturbative counterterm" is included in the projection space.

5.
Phys Rev Lett ; 116(9): 090406, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991162

RESUMO

We investigate Schwinger pair production in spatially inhomogeneous electric backgrounds. A critical point for the onset of pair production can be approached by fields that marginally provide sufficient electrostatic energy for an off-shell long-range electron-positron fluctuation to become a real pair. Close to this critical point, we observe features of universality which are analogous to continuous phase transitions in critical phenomena with the pair-production rate serving as an order parameter: electric backgrounds can be subdivided into universality classes and the onset of pair production exhibits characteristic scaling laws. An appropriate design of the electric background field can interpolate between power-law scaling, essential Berezinskii-Kosterlitz-Thouless-type scaling, and a power-law scaling with log corrections. The corresponding critical exponents only depend on the large-scale features of the electric background, whereas the microscopic details of the background play the role of irrelevant perturbations not affecting criticality.

6.
Phys Rev Lett ; 112(5): 050402, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580575

RESUMO

Electron-positron pair production in oscillating electric fields is investigated in the nonperturbative threshold regime. Accurate numerical solutions of quantum kinetic theory for corresponding observables are presented and analyzed in terms of a proposed model for an effective mass of electrons and positrons acquired within the given strong electric field. Although this effective mass cannot provide an exact description of the collective interaction of a charged particle with the strong field, physical observables are identified which carry direct and sensitive signatures of the effective mass.

7.
Phys Rev Lett ; 109(13): 131802, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23030082

RESUMO

We show that magnetic fields significantly enhance a new tunneling mechanism in quantum field theories with photons coupling to fermionic minicharged particles (MCPs). We propose a dedicated laboratory experiment of the light-shining-through-walls type that can explore a parameter regime comparable to and even beyond the best model-independent cosmological bounds. With present-day technology, such an experiment is particularly sensitive to MCPs with masses in and below the meV regime as suggested by new-physics extensions of the standard model.

8.
Philos Trans A Math Phys Eng Sci ; 369(1946): 2779-99, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21646278

RESUMO

We review the functional renormalization group (RG) approach to the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BCS-BEC) crossover for an ultracold gas of fermionic atoms. Formulated in terms of a scale-dependent effective action, the functional RG interpolates continuously between the atomic or molecular microphysics and the macroscopic physics on large length scales. We concentrate on the discussion of the phase diagram as a function of the scattering length and the temperature, which is a paradigm example for the non-perturbative power of the functional RG. A systematic derivative expansion provides for both a description of the many-body physics and its expected universal features as well as an accurate account of the few-body physics and the associated BEC and BCS limits.

9.
Phys Rev Lett ; 105(4): 040403, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20867823

RESUMO

The geometry dependence of Casimir forces is significantly more pronounced in the presence of thermal fluctuations due to a generic geometry-temperature interplay. We show that the thermal force for standard sphere-plate or cylinder-plate geometries develops a nonmonotonic behavior already in the simple case of a fluctuating Dirichlet scalar. In particular, the attractive thermal force can increase for increasing distances below a critical temperature. This anomalous behavior is triggered by a reweighting of relevant fluctuations on the scale of the thermal wavelength. The essence of the phenomenon becomes transparent within the worldline picture of the Casimir effect.

10.
Phys Rev Lett ; 101(13): 130404, 2008 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-18851425

RESUMO

We study electron-positron pair creation from the Dirac vacuum induced by a strong and slowly varying electric field (Schwinger effect) which is superimposed by a weak and rapidly changing electromagnetic field (dynamical pair creation). In the subcritical regime where both mechanisms separately are strongly suppressed, their combined impact yields a pair creation rate which is dramatically enhanced. Intuitively speaking, the strong electric field lowers the threshold for dynamical particle creation--or, alternatively, the fast electromagnetic field generates additional seeds for the Schwinger mechanism. These findings could be relevant for planned ultrahigh intensity lasers.

11.
Phys Rev Lett ; 97(14): 140402, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17155223

RESUMO

Possible extensions of the standard model of particle physics suggest the existence of particles with small, unquantized electric charge. Photon-initiated pair production of millicharged fermions in a magnetic field would manifest itself as a vacuum magnetic (VM) dichroism. We show that laser polarization experiments searching for this effect yield, in the mass range below 0.1 eV, much stronger constraints on millicharged fermions than previous laboratory searches. VM birefringence due to virtual pair production gives a slightly better constraint for masses between 0.1 and a few eV. We comment on the possibility that the VM dichroism observed by PVLAS arises from pair production of such millicharged fermions rather than from single production of axionlike particles. Such a scenario can be confirmed or firmly excluded by a search for invisible decays of orthopositronium with a branching-fraction sensitivity of about 10(-9).

12.
Phys Rev Lett ; 97(22): 220405, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17155784

RESUMO

We compute Casimir forces in open geometries with edges, involving parallel as well as perpendicular semi-infinite plates. We focus on Casimir configurations which are governed by a unique dimensional scaling law with a universal coefficient. With the aid of worldline numerics, we determine this coefficient for various geometries for the case of scalar-field fluctuations with Dirichlet boundary conditions. Our results facilitate an estimate of the systematic error induced by the edges of finite plates, for instance, in a standard parallel-plate experiment. The Casimir edge effects for this case can be reformulated as an increase of the effective area of the configuration.

13.
Phys Rev Lett ; 96(22): 220401, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16803290

RESUMO

We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using world-line numerics, we quantitatively determine the validity bounds of the proximity-force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R>0.00755. Even qualitatively, the PFA fails to predict reliably the correct sign of genuine Casimir curvature effects. We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA.

14.
Phys Rev Lett ; 93(11): 110405, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15447325

RESUMO

We investigate textbook QED in the framework of the exact renormalization group. In the strong-coupling region, we study the influence of fluctuation-induced photonic and fermionic self-interactions on the nonperturbative running of the gauge coupling. Our findings confirm the triviality hypothesis of complete charge screening if the ultraviolet cutoff is sent to infinity. Though the Landau pole does not belong to the physical coupling domain owing to spontaneous chiral-symmetry-breaking (chiSB), the theory predicts a scale of maximal UV extension of the same order as the Landau pole scale. In addition, we verify that the chiSB phase of the theory which is characterized by a light fermion and a Goldstone boson also has a trivial Yukawa coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...