Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Adv ; 6(15): eaaz4948, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32300658

RESUMO

Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔVt < 2 V over 10 hours of continuous operation), and high mobility values >1 cm2/V·s at room temperature. We show that multiple cation incorporation using strain-relieving cations like Cs and cations such as Rb, which act as passivation/crystallization modifying agents, is an effective strategy for reducing vacancy concentration and ion migration in perovskite FETs. Furthermore, we demonstrate that treatment of perovskite films with positive azeotrope solvents that act as Lewis bases (acids) enables a further reduction in defect density and substantial improvement in performance and stability of n-type (p-type) perovskite devices.

2.
ACS Appl Mater Interfaces ; 11(23): 20838-20844, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31099235

RESUMO

Perovskite-based thin-film solar cells today reach power conversion efficiencies of more than 22%. Methylammonium lead iodide (MAPI) is prototypical for this material class of hybrid halide perovskite semiconductors and at the focal point of interest for a growing community in research and engineering. Here, a detailed understanding of the charge carrier transport and its limitations by underlying scattering mechanisms is of great interest to the material's optimization and development. In this article, we present an all-optical study of the charge carrier diffusion properties in large-crystal MAPI thin films in the tetragonal crystal phase from 170 K to room temperature. We probe the local material properties of individual crystal grains within a MAPI thin film and find a steady decrease of the charge carrier diffusion constant with increasing temperature. From the resulting charge carrier mobility, we find a power law dependence of µ ∝ T m with m = -(1.8 ± 0.1). We further study the temperature-dependent mobility of the orthorhombic crystal phase from 50 to 140 K and observe a distinctly different exponent of m = -(1.2 ± 0.1).

3.
ACS Appl Mater Interfaces ; 11(13): 12948-12957, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30859802

RESUMO

Solution-processed perovskite solar cells reach efficiencies over 23% on lab-scale. However, a reproducible transfer of these established processes to upscaling techniques or different substrate surfaces requires a highly controllable perovskite film formation. Especially, hydrophobic surfaces cause severe dewetting issues. Such surfaces are particularly crucial for the so-called standard n-i-p cell architecture when fullerene-based electron transport layers are employed underneath perovskite absorber films. In this work, a unique and universally applicable method was developed based on the deposition of size-controlled Al2O3 or SiO2 nanoparticles. By enhancing the surface energy, they act as a universal wetting agent. This allows perovskite precursor solutions to be spread perfectly over various substrates including problematic hydrophobic Si-wafers or fullerene self-assembled monolayers (C60-SAMs). Moreover, the results show that the perovskite morphology, solar cell performance, and reproducibility benefit from the presence of the nanoparticles at the interface. When applied to 144 cm2 C60-SAM-coated substrates, homogenous coverage can be realized via spin coating resulting in average efficiencies of 16% (maximum 18%) on individualized cells with 0.1 cm2 active area. Modules in the same setup reached maximum efficiencies of 11 and 7% on 2.8 and 23.65 cm2 aperture areas, respectively.

4.
ACS Appl Mater Interfaces ; 10(9): 7974-7981, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433313

RESUMO

Micro- and nanocrystalline methylammonium lead iodide (MAPI)-based thin-film solar cells today reach power conversion efficiencies of over 20%. We investigate the impact of grain boundaries on charge carrier transport in large crystal MAPI thin films using time-resolved photoluminescence (PL) microscopy and numerical model calculations. Crystal sizes in the range of several tens of micrometers allow for the spatially and time resolved study of boundary effects. Whereas long-ranged diffusive charge carrier transport is observed within single crystals, no detectable diffusive transport occurs across grain boundaries. The observed PL transients are found to crucially depend on the microscopic geometry of the crystal and the point of observation. In particular, spatially restricted diffusion of charge carriers leads to slower PL decay near crystal edges as compared to the crystal center. In contrast to many reports in the literature, our experimental results show no quenching or additional loss channels due to grain boundaries for the studied material, which thus do not negatively affect the performance of the derived thin-film devices.

5.
Sci Adv ; 3(1): e1601935, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28138550

RESUMO

Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (µFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages.

6.
Nano Lett ; 15(9): 6095-101, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26236949

RESUMO

Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425-570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1-x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride-bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm.

7.
J Phys Chem Lett ; 6(7): 1265-9, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-26262985

RESUMO

Recently, hybrid perovskites have gathered much interest as alternative materials for the fabrication of highly efficient and cost-competitive solar cells; however, many questions regarding perovskite crystal formation and deposition methods remain. Here we have applied a two-step protocol where a crystalline PbI2 precursor film is converted to MAPbI3-xClx perovskite upon immersion in a mixed solution of methylammonium iodide and methylammonium chloride. We have investigated both films with grazing incidence small-angle X-ray scattering to probe the inner film morphology. Our results demonstrate a strong link between lateral crystal sizes in the films before and after conversion, which we attribute to laterally confined crystal growth. Additionally, we observe an accumulation of smaller grains within the bulk in contrast with the surface. Thus, our results help to elucidate the crystallization process of perovskite films deposited via a two-step technique that is crucial for controlled film formation, improved reproducibility, and high photovoltaic performance.

8.
Inorg Chem ; 53(14): 7722-9, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25000365

RESUMO

Te/Sb/Ge/Ag (TAGS) materials with rather high concentrations of cation vacancies exhibit improved thermoelectric properties as compared to corresponding conventional TAGS (with constant Ag/Sb ratio of 1) due to a significant reduction of the lattice thermal conductivity. There are different vacancy ordering possibilities depending on the vacancy concentration and the history of heat treatment of the samples. In contrast to the average α-GeTe-type structure of TAGS materials with cation vacancy concentrations <∼3%, quenched compounds like Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1 exhibit "parquet-like" multidomain nanostructures with finite intersecting vacancy layers. These are perpendicular to the pseudocubic <111> directions but not equidistantly spaced, comparable to the nanostructures of compounds (GeTe)nSb2Te3. Upon heating, the nanostructures transform into long-periodically ordered trigonal phases with parallel van der Waals gaps. These phases are slightly affected by stacking disorder but distinctly different from the α-GeTe-type structure reported for conventional TAGS materials. Deviations from this structure type are evident only from HRTEM images along certain directions or very weak intensities in diffraction patterns. At temperatures above ∼400 °C, a rock-salt-type high-temperature phase with statistically disordered cation vacancies is formed. Upon cooling, the long-periodically trigonal phases are reformed at the same temperature. Quenched nanostructured Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1 exhibit ZT values as high as 1.3 and 0.8, respectively, at 160 °C, which is far below the phase transition temperatures. After heat treatment, i.e., without pronounced nanostructure and when only reversible phase transitions occur, the ZT values of Ge0.53Ag0.13Sb0.27□0.07Te1 and Ge0.61Ag0.11Sb0.22□0.06Te1 with extended van der Waals gaps amount to 1.6 at 360 °C and 1.4 at 410 °C, respectively, which is at the top end of the range of high-performance TAGS materials.

9.
J Phys Chem Lett ; 5(16): 2791-5, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26278080

RESUMO

The development of medium-bandgap solar cell absorber materials is of interest for the design of devices such as tandem solar cells and building-integrated photovoltaics. The recently developed perovskite solar cells can be suitable candidates for these applications. At present, wide bandgap alkylammonium lead bromide perovskite absorbers require a high-temperature sintered mesoporous TiO2 photoanode in order to function efficiently, which makes them unsuitable for some of the above applications. Here, we present for the first time highly efficient wide bandgap planar heterojunction solar cells based on the structurally related formamidinium lead bromide. We show that this material exhibits much longer diffusion lengths of the photoexcited species than its methylammonium counterpart. This results in planar heterojunction solar cells exhibiting power conversion efficiencies approaching 7%. Hence, formamidinium lead bromide is a strong candidate as a wide bandgap absorber in perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...