Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 134(1-2): 162-70, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-18241947

RESUMO

Human embryonic stem cells (hESCs) can differentiate into a variety of specialized cell types. Thus, they provide a model system for embryonic development to investigate the molecular processes of cell differentiation and lineage commitment. The development of the cardiac lineage is easily detected in mixed cultures by the appearance of spontaneously contracting areas of cells. We performed gene expression profiling of undifferentiated and differentiating hESCs and monitored 468 genes expressed during cardiac development and/or in cardiac tissue. Their transcription during early differentiation of hESCs through embryoid bodies (EBs) was investigated and compared with spontaneously differentiating hESCs maintained on feeders in culture without passaging (high-density (HD) protocol). We observed a larger variation in the gene expression between cells from a single cell line that were differentiated using two different protocols than in cells from different cell lines that were cultured according to the same protocol. Notably, the EB protocol resulted in more reproducible transcription profiles than the HD protocol. The results presented here provide new information about gene regulation during early differentiation of hESCs with emphasis on the cardiomyogenic program. In addition, we also identified regulatory elements that could prove critical for the development of the cardiomyocyte lineage.


Assuntos
Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica/métodos , Miócitos Cardíacos/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Análise por Conglomerados , Células-Tronco Embrionárias/citologia , Humanos , Miócitos Cardíacos/citologia
2.
Stem Cells ; 25(2): 473-80, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17284652

RESUMO

Housekeeping genes (HKGs) are involved in basic functions needed for the sustenance of the cell and are assumed to be constitutively expressed at a constant level. Based on these features, HKGs are frequently used for normalization of gene expression data. In the present study, we used the CodeLink Gene Expression Bioarray system to interrogate changes in gene expression occurring during differentiation of human ESCs (hESCs). Notably, in the three hESC lines used for the study, we observed that the RNA levels of 56 frequently used HKGs varied to a degree that rendered them inappropriate as reference genes. Therefore, we defined a novel set of HKGs specifically for hESCs. Here we present a comprehensive list of 292 genes that are stably expressed (coefficient of variation <20%) in differentiating hESCs. These genes were further grouped into high-, medium-, and low-expressed genes. The expression patterns of these novel HKGs show very little overlap with results obtained from somatic cells and tissues. We further explored the stability of this novel set of HKGs in independent, publicly available gene expression data from hESCs and observed substantial similarities with our results. Gene expression was confirmed by real-time quantitative polymerase chain reaction analysis. Taken together, these results suggest that differentiating hESCs have a unique HKG signature and underscore the necessity to validate the expression profiles of putative HKGs. In addition, this novel set of HKGs can preferentially be used as controls in gene expression analyses of differentiating hESCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Genes Essenciais , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Biomol Tech ; 14(2): 143-8, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-14676313

RESUMO

Preparing plasmid templates for DNA sequencing is the most time-consuming step in the sequencing process. Current template preparation methods rely on a labor-intensive, multistep procedure that takes up to 24 h and produces templates of varying quality and quantity. The TempliPhi DNA Sequencing Template Amplification Kit eliminates the requirement for extended bacterial growth prior to sequencing and saves laboratory personnel hands-on time by eliminating the centrifugation and transfer steps currently required by older preparatory methods. In addition, costly purification filters and columns are not necessary, as amplified product can be added directly to a sequencing reaction. Starting material can be any circular template from a colony, culture, glycerol stock, or plaque. Based on rolling circle amplification and employing bacteriophage Phi29 DNA polymerase, the method can produce 3-5 microg of template directly from a single bacterial colony in as little as 4 h. Implementation of these procedures in a laboratory or core sequencing facility can decrease cost on tips, plates, and other plasticware, while at the same time increase throughput.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Plasmídeos , Análise de Sequência de DNA/métodos , DNA Polimerase Dirigida por DNA
4.
Biotechniques ; Suppl: 44-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12083397

RESUMO

We have developed a novel, isothermal DNA amplification strategy that employs phi29 DNA polymerase and rolling circle amplification to generate high-quality templates for DNA sequencing reactions. The TempliPhi DNA amplification kits take advantage of the fact that cloned DNA is typically obtained in circular vectors, which are readily replicated in vitro using phi29 DNA polymerase by a rolling circle mechanism. This single subunit, proofreading DNA polymerase has excellent processivity and strand displacement properties for generation of multiple, tandem double-stranded copies of the circular DNA, generating as much as 10(7)-fold amplification. Large amounts of product (1-3 microg) can be obtained in as little as 4 hours. Input DNA can be as little as 0.01 ng of purified plasmid DNA, a single bacterial colony, or a 1 microL of a saturated overnight culture. Additionally, the presence of an associated proof reading function within the phi29 DNA polymerase ensures high-fidelity amplification. Once completed, the product DNA can be used directly in sequencing reactions. Additionally, the properties of phi29 DNA polymerase and its use in applications such as amplification ofhuman genomic DNA for genotyping studies is discussed.


Assuntos
Fagos Bacilares/genética , DNA Circular , DNA Polimerase Dirigida por DNA , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Análise de Sequência de DNA/instrumentação , Moldes Genéticos , DNA Bacteriano/genética , DNA Viral , Escherichia coli/genética , Escherichia coli/virologia , Biblioteca Gênica , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...