Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Med Imaging (Bellingham) ; 5(2): 025501, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29662920

RESUMO

A principal difference between the channelized Hotelling (CH) and visual-search (VS) model observers is how they respond to noise texture in images. We compared the two observers in lesion-detection studies to evaluate linear and angular sampling parameters for CT. Simulated lung images were generated from a single two-dimensional mathematical torso phantom containing circular lesions of fixed radius and relative contrast. Projection datasets were produced for two detector pixel sizes and from 15 to 128 projections at 15 and 65 M counts per set. Filtered backprojection reconstructions were obtained with dimensions of [Formula: see text] and [Formula: see text]. A localization receiver operating characteristic study was conducted with two human observers, three single-feature VS observers, and a feature-adaptive VS observer. The effects of the sampling parameters on performance were similar for all of these observers. The CH observer, applied in location-known studies with and without background variability, was not affected by the variations in angular sampling. The two-stage VS framework was an effective modification of the CH observer for assessing the effects of noise texture on human-observer performance in this study.

2.
Med Phys ; 45(7): 3019-3030, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29704868

RESUMO

PURPOSE: The task-based assessment of image quality using model observers is increasingly used for the assessment of different imaging modalities. However, the performance computation of model observers needs standardization as well as a well-established trust in its implementation methodology and uncertainty estimation. The purpose of this work was to determine the degree of equivalence of the channelized Hotelling observer performance and uncertainty estimation using an intercomparison exercise. MATERIALS AND METHODS: Image samples to estimate model observer performance for detection tasks were generated from two-dimensional CT image slices of a uniform water phantom. A common set of images was sent to participating laboratories to perform and document the following tasks: (a) estimate the detectability index of a well-defined CHO and its uncertainty in three conditions involving different sized targets all at the same dose, and (b) apply this CHO to an image set where ground truth was unknown to participants (lower image dose). In addition, and on an optional basis, we asked the participating laboratories to (c) estimate the performance of real human observers from a psychophysical experiment of their choice. Each of the 13 participating laboratories was confidentially assigned a participant number and image sets could be downloaded through a secure server. Results were distributed with each participant recognizable by its number and then each laboratory was able to modify their results with justification as model observer calculation are not yet a routine and potentially error prone. RESULTS: Detectability index increased with signal size for all participants and was very consistent for 6 mm sized target while showing higher variability for 8 and 10 mm sized target. There was one order of magnitude between the lowest and the largest uncertainty estimation. CONCLUSIONS: This intercomparison helped define the state of the art of model observer performance computation and with thirteen participants, reflects openness and trust within the medical imaging community. The performance of a CHO with explicitly defined channels and a relatively large number of test images was consistently estimated by all participants. In contrast, the paper demonstrates that there is no agreement on estimating the variance of detectability in the training and testing setting.


Assuntos
Processamento de Imagem Assistida por Computador , Laboratórios , Tomografia Computadorizada por Raios X , Variações Dependentes do Observador , Incerteza
3.
J Opt Soc Am A Opt Image Sci Vis ; 34(6): 838-845, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036067

RESUMO

Visual-search (VS) model observers have the potential to provide reliable predictions of human-observer performance in detection-localization tasks. The purpose of this work was to examine some characteristics of human gaze on breast images with the goal of informing the design of our VS observers. Using a helmet-mounted eye-tracking system, we recorded the movement of gaze from human observers as they searched for masses in sets of 2D digital breast tomosynthesis (DBT) images. The masses in this study were of a single profile. The DBT images were extracted from image volumes reconstructed with the filtered backprojection method. Fixation times associated with observer points of interest were computed from the observer data. We used the k-mean clustering algorithm to get dwell times of gaze data. The dwell times were then compared to sets of morphological feature values extracted from the images. These features, extracted as cross correlations involving the mass profile and the test image, included the matched filter (MF), gradient MF, Laplacian MF, and adaptive MF. The adaptive MF combining four feature maps was computed using a hotelling discriminant generated from training data. For this investigation, we computed correlation coefficients between the fixation times and the feature values. We also conducted a significance test by computing p-values of correlation coefficients for five features. Of all these features, the adaptive MF provided the highest correlation coefficients for DBT images with different densities.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Movimentos Oculares/fisiologia , Fixação Ocular/fisiologia , Mamografia , Algoritmos , Feminino , Humanos , Variações Dependentes do Observador , Curva ROC , Intensificação de Imagem Radiográfica , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
4.
IEEE Trans Nucl Sci ; 63(3): 1426-1434, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27980345

RESUMO

While mathematical model observers are intended for efficient assessment of medical imaging systems, their findings should be relevant for human observers as the primary clinical end users. We have investigated whether pursuing equivalence between the model and human-observer tasks can help ensure this goal. A localization ROC (LROC) study tested prostate lesion detection in simulated In-111 SPECT imaging with anthropomorphic phantoms. The test images were 2D slices extracted from reconstructed volumes. The iterative OSEM reconstruction method was used with Gaussian postsmoothing. Variations in the number of iterations and the level of postfiltering defined the test strategies in the study. Human-observer performance was compared with that of a visual-search (VS) observer, a scanning channelized Hotelling observer, and a scanning nonprewhitening (CNPW) observer. These model observers were applied with precise information about the target regions of interest (ROIs). ROI knowledge was a study variable for the human observers. In one study format, the humans read the SPECT image alone. With a dual-modality format, the SPECT image was presented alongside an anatomical image slice extracted from the density map of the phantom. Performance was scored by area under the LROC curve. The human observers performed significantly better with the dual-modality format, and correlation with the model observers was also improved. Given the human-observer data from the SPECT study format, the Pearson correlation coefficients for the model observers were 0.58 (VS), -0.12 (CH), and -0.23 (CNPW). The respective coefficients based on the human-observer data from the dual-modality study were 0.72, 0.27, and -0.11. These results point towards the continued development of the VS observer for enhancing task equivalence in model-observer studies.

5.
IEEE Trans Nucl Sci ; 63(1): 117-129, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27182079

RESUMO

The objectives of this investigation were to model the respiratory motion of solitary pulmonary nodules (SPN) and then use this model to determine the impact of respiratory motion on the localization and detection of small SPN in SPECT imaging for four reconstruction strategies. The respiratory motion of SPN was based on that of normal anatomic structures in the lungs determined from breath-held CT images of a volunteer acquired at two different stages of respiration. End-expiration (EE) and time-averaged (Frame Av) non-uniform-B-spline cardiac torso (NCAT) digital-anthropomorphic phantoms were created using this information for respiratory motion within the lungs. SPN were represented as 1 cm diameter spheres which underwent linear motion during respiration between the EE and end-inspiration (EI) time points. The SIMIND Monte Carlo program was used to produce SPECT projection data simulating Tc-99m depreotide (NeoTect) imaging. The projections were reconstructed using 1) no correction (NC), 2) attenuation correction (AC), 3) resolution compensation (RC), and 4) attenuation correction, scatter correction, and resolution compensation (AC_SC_RC). A human-observer localization receiver operating characteristics (LROC) study was then performed to determine the difference in localization and detection accuracy with and without the presence of respiratory motion. The LROC comparison determined that respiratory motion degrades tumor detection for all four reconstruction strategies, thus correction for SPN motion would be expected to improve detection accuracy. The inclusion of RC in reconstruction improved detection accuracy for both EE and Frame Av over NC and AC. Also the magnitude of the impact of motion was least for AC_SC_RC.

6.
IEEE Trans Nucl Sci ; 63(1): 130-139, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27182080

RESUMO

The objective of this investigation was to determine the effectiveness of three motion reducing strategies in diminishing the degrading impact of respiratory motion on the detection of small solitary pulmonary nodules (SPN) in single photon emission computed tomographic (SPECT) imaging in comparison to a standard clinical acquisition and the ideal case of imaging in the absence of respiratory motion. To do this non-uniform rational B-spline cardiac-torso (NCAT) phantoms based on human-volunteer CT studies were generated spanning the respiratory cycle for a normal background distribution of Tc-99m NeoTect. Similarly, spherical phantoms of 1.0 cm diameter were generated to model small SPN for each of 150 uniquely located sites within the lungs whose respiratory motion was based on the motion of normal structures in the volunteer CT studies. The SIMIND Monte Carlo program was used to produce SPECT projection data from these. Normal and single-lesion containing SPECT projection sets with a clinically realistic Poisson noise level were created for the cases of: 1) the end-expiration (EE) frame with all counts, 2) respiration-averaged motion with all counts, 3) one-fourth of the 32 frames centered around EE (Quarter-Binning), 4) one-half of the 32 frames centered around EE (Half-Binning), and 5) eight temporally binned frames spanning the respiratory cycle. Each of the sets of combined projection data were reconstructed with RBI-EM with system spatial-resolution compensation (RC). Based on the known motion for each of the 150 different lesions, the reconstructed volumes of respiratory bins were shifted so as to superimpose the locations of the SPN onto that in the first bin (Reconstruct and Shift). Five human-observers performed localization receiver operating characteristics (LROC) studies of SPN detection. The observer results were analyzed for statistical significance differences in SPN detection accuracy among the three correction strategies, the standard acquisition, and the ideal case of the absence of respiratory motion. Our human-observer LROC determined that Quarter-Binning and Half-Binning strategies resulted in SPN detection accuracy statistically significantly below (P < 0.05) that of standard clinical acquisition, whereas the Reconstruct and Shift strategy resulted in a detection accuracy not statistically significantly different from that of the ideal case. This investigation demonstrates that tumor detection based on acquisitions associated with less than all the counts which could potentially be employed may result in poorer detection despite limiting the motion of the lesion. The Reconstruct and Shift method results in tumor detection that is equivalent to ideal motion correction.

7.
Med Phys ; 43(3): 1563-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26936739

RESUMO

PURPOSE: Mathematical model observers commonly used for diagnostic image-quality assessments in x-ray imaging research are generally constrained to relatively simple detection tasks due to their need for statistical prior information. Visual-search (VS) model observers that employ morphological features in sequential search and analysis stages have less need for such information and fewer task constraints. The authors compared four VS observers against human observers and an existing scanning model observer in a pilot study that quantified how mass detection and localization in simulated digital breast tomosynthesis (DBT) can be affected by the number P of acquired projections. METHODS: Digital breast phantoms with embedded spherical masses provided single-target cases for a localization receiver operating characteristic (LROC) study. DBT projection sets based on an acquisition arc of 60° were generated for values of P between 3 and 51. DBT volumes were reconstructed using filtered backprojection with a constant 3D Butterworth postfilter; extracted 2D slices were used as test images. Three imaging physicists participated as observers. A scanning channelized nonprewhitening (CNPW) observer had knowledge of the mean lesion-absent images. The VS observers computed an initial single-feature search statistic that identified candidate locations as local maxima of either a template matched-filter (MF) image or a gradient-template MF (GMF) image. Search inefficiencies that modified the statistic were also considered. Subsequent VS candidate analyses were carried out with (i) the CNPW statistical discriminant and (ii) the discriminant computed from GMF training images. These location-invariant discriminants did not utilize covariance information. All observers read 36 training images and 108 study images per P value. Performance was scored in terms of area under the LROC curve. RESULTS: Average human-observer performance was stable for P between 7 and 35. In the absence of search inefficiencies, the VS models based on the GMF analysis provided the best correlation (Pearson ρ ≥ 0.62) with the human results. The CNPW-based VS observers deviated from the humans primarily at lower values of P. In this limited study, search inefficiencies allowed for good quantitative agreement with the humans for most of the VS observers. CONCLUSIONS: The computationally efficient training requirements for the VS observer are suitable for high-resolution imaging, indicating that the observer framework has the potential to overcome important task limitations of current model observers for x-ray applications.


Assuntos
Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Variações Dependentes do Observador , Imagens de Fantasmas , Controle de Qualidade , Curva ROC
8.
J Med Imaging (Bellingham) ; 3(1): 015502, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26835503

RESUMO

Model observers intended to predict the diagnostic performance of human observers should account for the effects of both quantum and anatomical noise. We compared the abilities of several visual-search (VS) and scanning Hotelling-type models to account for anatomical noise in a localization receiver operating characteristic (LROC) study involving simulated nuclear medicine images. Our VS observer invoked a two-stage process of search and analysis. The images featured lesions in the prostate and pelvic lymph nodes. Lesion contrast and the geometric resolution and sensitivity of the imaging collimator were the study variables. A set of anthropomorphic mathematical phantoms was imaged with an analytic projector based on eight parallel-hole collimators with different sensitivity and resolution properties. The LROC study was conducted with human observers and the channelized nonprewhitening, channelized Hotelling (CH) and VS model observers. The CH observer was applied in a "background-known-statistically" protocol while the VS observer performed a quasi-background-known-exactly task. Both of these models were applied with and without internal noise in the decision variables. A perceptual search threshold was also tested with the VS observer. The model observers without inefficiencies failed to mimic the average performance trend for the humans. The CH and VS observers with internal noise matched the humans primarily at low collimator sensitivities. With both internal noise and the search threshold, the VS observer attained quantitative agreement with the human observers. Computational efficiency is an important advantage of the VS observer.

9.
Proc SPIE Int Soc Opt Eng ; 86682013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24236226

RESUMO

We are investigating human-observer models that perform clinically realistic detection and localization tasks as a means of making reliable assessments of digital breast tomosynthesis images. The channelized non-prewhitening (CNPW) observer uses the background known exactly task for localization and detection. Visual-search observer models attempt to replicate the search patterns of trained radiologists. The visual-search observer described in this paper utilizes a two-phase approach, with an initial holistic search followed by directed analysis and decision making. Gradient template matching is used for the holistic search, and the CNPW observer is used for analysis and decision making. Spherical masses were embedded into anthropomorphic breast phantoms, and simulated projections were made using ray-tracing and a serial cascade model. A localization ROC study was performed on these images using the visual-search model observer and the CNPW observer. Observer performance from the two computer observers was compared to human observer performance. The visual-search observer was able to produce area under the LROC curve values similar to those from human observers; however, more research is needed to increase the robustness of the algorithm.

10.
Med Phys ; 40(9): 092505, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24007181

RESUMO

PURPOSE: Mathematical model observers are intended for efficient assessment of diagnostic image quality, but model-observer studies often are not representative of clinical realities. Model observers based on a visual-search (VS) paradigm may allow for greater clinical relevance. The author has compared the performances of several VS model observers with those of human observers and an existing scanning model observer for a study involving nodule detection and localization in simulated Tc-99m single-photon emission computed tomography (SPECT) lung volumes. METHODS: A localization receiver operating characteristic (LROC) study compared two iterative SPECT reconstruction strategies: an all-corrections (AllC) strategy with compensations for attenuation, scatter, and distance-dependent camera resolution and an "RC" strategy with resolution compensation only. Nodules in the simulation phantom were of three different relative contrasts. Observers in the study had access to the coronal, sagittal, and transverse displays of the reconstructed volumes. Three human observers each read 50 training volumes and 100 test volumes per reconstruction strategy. The same images were analyzed by a channelized nonprewhitening (CNPW) scanning observer and two VS observers. The VS observers implemented holistic search processes that identified focal points of Tc-99m uptake for subsequent analysis by the CNPW scanning model. The level of prior knowledge about the background structure in the images was a study variable for the model observers. Performance was scored by area under the LROC curve. RESULTS: The average human-observer performances were respectively 0.67 ± 0.04 and 0.61 ± 0.03 for the RC and AllC strategies. Given approximate knowledge about the background structure, both VS models scored 0.69 ± 0.08 (RC) and 0.66 ± 0.08 (AllC). The scanning observer reversed the strategy ranking in scoring 0.73 ± 0.08 with the AllC strategy and 0.64 ± 0.08 with the RC strategy. The VS observers exhibited less sensitivity to variations in background knowledge compared to the scanning observer. CONCLUSIONS: The VS framework has the potential to increase the clinical similitude of model-observer studies and to enhance the ability of existing model observers to quantitatively predict human-observer performance.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Modelos Teóricos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Humanos , Pulmão/patologia , Tamanho do Órgão , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Tecnécio
11.
IEEE Trans Med Imaging ; 30(4): 904-14, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21041158

RESUMO

We examined the application of an iterative penalized maximum likelihood (PML) reconstruction method for improved detectability of microcalcifications (MCs) in digital breast tomosynthesis (DBT). Localized receiver operating characteristic (LROC) psychophysical studies with human observers and 2-D image slices were conducted to evaluate the performance of this reconstruction method and to compare its performance against the commonly used Feldkamp FBP algorithm. DBT projections were generated using rigorous computer simulations that included accurate modeling of the noise and detector blur. Acquisition dose levels of 0.7, 1.0, and 1.5 mGy in a 5-cm-thick compressed breast were tested. The defined task was to localize and detect MC clusters consisting of seven MCs. The individual MC diameter was 150 µm. Compressed-breast phantoms derived from CT images of actual mastectomy specimens provided realistic background structures for the detection task. Four observers each read 98 test images for each combination of reconstruction method and acquisition dose. All observers performed better with the PML images than with the FBP images. With the acquisition dose of 0.7 mGy, the average areas under the LROC curve (A(L)) for the PML and FBP algorithms were 0.69 and 0.43, respectively. For the 1.0-mGy dose, the values of A(L) were 0.93 (PML) and 0.7 (FBP), while the 1.5-mGy dose resulted in areas of 1.0 and 0.9, respectively, for the PML and FBP algorithms. A 2-D analysis of variance applied to the individual observer areas showed statistically significant differences (at a significance level of 0.05) between the reconstruction strategies at all three dose levels. There were no significant differences in observer performance for any of the dose levels.


Assuntos
Doenças Mamárias/metabolismo , Mama/metabolismo , Calcinose/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Mamografia/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Mama/anatomia & histologia , Mama/patologia , Doenças Mamárias/patologia , Simulação por Computador , Feminino , Humanos , Imagens de Fantasmas , Curva ROC , Reprodutibilidade dos Testes
12.
Med Phys ; 36(6): 1976-84, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19610286

RESUMO

In this article the authors evaluate a recently proposed variable dose (VD)-digital breast tomosynthesis (DBT) acquisition technique in terms of the detection accuracy for breast masses and microcalcification (MC) clusters. With this technique, approximately half of the total dose is used for one center projection and the remaining dose is split among the other tomosynthesis projection views. This acquisition method would yield both a projection view and a reconstruction view. One of the aims of this study was to evaluate whether the center projection alone of the VD acquisition can provide equal or superior MC detection in comparison to the 3D images from uniform dose (UD)-DBT. Another aim was to compare the mass-detection capabilities of 3D reconstructions from VD-DBT and UD-DBT. In a localization receiver operating characteristic (LROC) observer study of MC detection, the authors compared the center projection of a VD acquisitioh scheme (at 2 mGy dose) with detector pixel size of 100 microm with the UD-DBT reconstruction (at 4 mGy dose) obtained with a voxel size of 100 microm. MCs with sizes of 150 and 180 microm were used in the study, with each cluster consisting of seven MCs distributed randomly within a small volume. Reconstructed images in UD-DBT were obtained from a projection set that had a total of 4 mGy dose. The current study shows that for MC detection, using the center projection alone of VD acquisition scheme performs worse with area under the LROC curve (AL) of 0.76 than when using the 3D reconstructed image using the UD acquisition scheme (AL=0.84). A 2D ANOVA found a statistically significant difference (p=0.038) at a significance level of 0.05. In the current study, although a reconstructed image was also available using the VD acquisition scheme, it was not used to assist the MC detection task which was done using the center projection alone. In the case of evaluation of detection accuracy of masses, the reconstruction with VD-DBT (AL=0.71) was compared to that obtained from the UD-DBT (AL=0.78). The authors found no statistically significant difference between the two (p-value=0.22), although all the observers performed better for UD-DBT.


Assuntos
Algoritmos , Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Lesões Pré-Cancerosas/diagnóstico por imagem , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Simulação por Computador , Feminino , Humanos , Modelos Biológicos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Med Phys ; 35(11): 4808-15, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19070213

RESUMO

Using psychophysical studies, the authors have evaluated the effectiveness of various strategies for compensating for physical degradations in SPECT imaging. The particular application was Ga-67-citrate imaging of mediastinal tumors, which was chosen because Ga-67 is a particularly challenging radionuclide for imaging. The test strategies included compensations for nonuniform attenuation, distance-dependent spatial resolution, and scatter applied in various combinations as part of iterative reconstructions with the rescaled block iterative-expectation maximization (RBI-EM) algorithm. The authors also evaluated filtered backprojection reconstructions. Strategies were compared on the basis of human-observer studies of lesion localization and detection accuracy using the localization receiver operating characteristics (LROC) paradigm. These studies involved hybrid images which were obtained by adding the projections of Monte Carlo-simulated lesions to disease-free clinical projection data. The background variability in these images can provide a more realistic assessment of the relative utility of reconstruction strategies than images from anthropomorphic digital phantoms. The clinical datasets were obtained using a GE-VG dual-detector SPECT system with CT-estimated attenuation maps. After determining a target lesion contrast, they conducted pilot LROC studies to obtain a near-optimal set of reconstruction parameters for each strategy, and then conducted the strategy comparison study. The results indicate improved detection accuracy with RBI-EM as more compensations are applied within the reconstruction. The relative rankings of the test strategies agreed in most cases with those of previous studies that employed simulated projections of digital anthropomorphic phantoms, thus confirming the findings of those studies.


Assuntos
Radioisótopos de Gálio , Processamento de Imagem Assistida por Computador/métodos , Neoplasias do Mediastino/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Análise de Variância , Humanos
14.
IEEE Trans Nucl Sci ; 4: 2708-2714, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-20336188

RESUMO

Patient motion degrades the quality of SPECT studies. Body bend and twist are types of patient deformation, which may occur during SPECT imaging, and which has been generally ignored in SPECT motion correction strategies. To correct for these types of motion, we propose a deformation model and its inclusion within an iterative reconstruction algorithm. Two experiments were conducted to investigate the applicability of our model. In the first experiment, the return of the postmotion-compensation locations of markers on the body-surface of a volunteer to approximate their original coordinates is used to examine our method of estimating the parameters of our model and the parameters' use in undoing deformation. The second experiment employed simulated projections of the MCAT phantom formed using an analytical projector which includes attenuation and distance-dependent resolution to investigate applications of our model in reconstruction. We demonstrate in the simulation studies that twist and bend can significantly degrade SPECT image quality visually. Our correction strategy is shown to be able to greatly diminish the degradation seen in the slices, provided the parameters are estimated accurately. We view this work as a first step towards being able to estimate and correct patient deformation based on information obtained from marker tracking data.

15.
Artigo em Inglês | MEDLINE | ID: mdl-19169429

RESUMO

Expanding on the work of Nuyts et. al [1], Bai et. al. [2], and Bai and Shao [3], who all studied the effects of attenuation and attenuation correction on tumor-to-background ratios and signal detection, we have derived a general expression for the tumor-to-background ratio (TBR) for SPECT attenuated data that have been reconstructed with a linear, non-iterative reconstruction operator O. A special case of this is when O represents discrete filtered back-projection (FBP). The TBR of the reconstructed, uncorrected attenuated data (TBR(no-AC)) can be written as a weighted sum of the TBR of the FBP-reconstructed unattenuated data (TBR(FBP)) and the TBR of the FBP-reconstructed "difference" projection data (TBR(diff)). We evaluated the expression for TBR(no-AC) for a variety of objects and attenuation conditions. The ideal observer signal-to-noise ratio (SNR(ideal)) was also computed in projection space, in order to obtain an upper bound on signal detectability for a signal-known-exactly/background-known-exactly (SKE/BKE) detection task. The results generally show that SNR(ideal) is lower for tumors located deeper within the attenuating medium and increases for tumors nearer the edge of the object. In addition, larger values for the uniform attenuation coefficient µ lead to lower values for SNR(ideal). The TBR for FBP-reconstructed, uncorrected attenuated data can both under- and over-estimate the true TBR, depending on several properties of the attenuating medium, including the shape of the attenuator, the uniformity of the attenuator, and the degree to which the data are attenuated.

16.
IEEE Trans Nucl Sci ; 54(1): 130-139, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19081763

RESUMO

Patient motion during cardiac SPECT imaging can cause diagnostic imaging artifacts. We have implemented a Neural Network (NN) approach to decompose monitored patient motion data, gathered during cardiac SPECT imaging, using the Polaris stereo-IR real-time motion-tracking system. Herein, we show the successful decomposition of Polaris motion data into rigid body motion (RBM) and respiratory motion (RM). The motivation for separating RM from RBM is that each is corrected using different methods. The NN requires the input of a RBM threshold sensitivity limit, as well as the median filter window width. A two step approach can be used in setting the median filter width. In the 1(st) NN run the median filter window width is initially set to a "fixed" width typical of the respiration period. This 1(st) NN run does an initial decomposition of the data into RM and RBM. The RM is then fed into an FFT algorithm to produce a respiratory period output file for use during a 2(nd) NN run, where the median filter width can "adapt" to the patient respiratory rate at each time point. Implementation of the NN was in the UNIX environment with Interactive Data Language (IDL). Decomposition of simulated "signals known exactly" RBM and RM resulted in average value errors less than 0.11 mm for RBM steps, and an overall root mean square error of only 0.3 mm for RM or RBM. Volunteer RBM and RM Polaris data were successfully decomposed by the NN with RBM steps resolved with an average difference of only 0.8 mm as compared to values displayed on the SPECT gantry console which are only to the nearest mm. A plot of the NN RM trace and the synchronized trace from a pneumatic bellows shows virtually identical characteristics. Anthropomorphic phantom RBM and RM were decomposed and used to correct motion in SPECT images during reconstruction. The motion corrected slices looked visually identical to slices acquired without motion, and comparison of slice count profiles further confirmed the correction.

17.
IEEE Nucl Sci Symp Conf Rec (1997) ; 6(1): 4222-4225, 2007 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19779594

RESUMO

With the widespread availability of SPECT/CT systems it has become feasible to incorporate prior knowledge about anatomical boundaries into the SPECT reconstruction process, thus improving observer performance on tasks of clinical interest. We determine the optimal anatomical-prior strength for lesion search by measuring area under the LROC curve using human observers. We conclude that prior strength should be chosen assuming that only organ boundaries are available, even if lesion boundaries will also be known some of the time. We also test whether or not the presence of anatomical priors affects the observer's strategy, and conclude that mixing images with and without priors does not hurt reader performance when priors are not available. Finally, we examine whether using an anatomical prior in SPECT reconstruction helps observer performance when the observer already knows the possible lesion location, and conclude for this task anatomical priors do not provide the same improvement seen in search tasks.

18.
IEEE Trans Med Imaging ; 25(7): 838-44, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16827485

RESUMO

Due to the extended imaging times employed in single photon emission computed tomography (SPECT) and positron emission tomography (PET), patient motion during imaging is a common clinical occurrence. The fast and accurate correction of the three-dimensional (3-D) translational and rotational patient motion in iterative reconstruction is thus necessary to address this important cause of artifacts. We propose a method of incorporating 3-D Gaussian interpolation in the projector/backprojector pair to facilitate compensation for rigid-body motion in addition to attenuation and distance-dependent blurring. The method works as the interpolation step for moving the current emission voxel estimates and attenuation maps in the global coordinate system to the new patient location in the rotating coordinate system when calculating the expected projection. It also is employed for moving back the backprojection of the ratio of the measured projection to the expected projection and backprojection of the unit value (sensitivity factor) to the original location. MCAT simulations with known six-degree-of-freedom (6DOF) motion were employed to evaluate the accuracy of our method of motion compensation. We also tested the method with acquisitions of the data spectrum anthropomorphic phantom where motion during SPECT acquisition was measured using the Polaris IR motion tracking system. No motion artifacts were seen on the reconstructions with the motion compensation.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Movimento , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Simulação por Computador , Modelos Biológicos , Modelos Estatísticos , Distribuição Normal , Análise Numérica Assistida por Computador , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação
19.
Artigo em Inglês | MEDLINE | ID: mdl-19194523

RESUMO

We use receiver operating characteristic (ROC) analysis of a location-known-exactly (LKE) lesion detection task to compare the image quality of SPECT reconstruction with and without various combinations of attenuation correction (AC), scatter correction (SC) and resolution compensation (RC). Hybrid images were generated from Tc-99m labelled NeoTect clinical backgrounds into which Monte Carlo simulated solitary pulmonary nodule (SPN) lung lesions were added, then reconstructed using several strategies. Results from a human-observer study show that attenuation correction degrades SPN detection, while resolution correction improves SPN detection, even when the lesion location is known. This agrees with the results of a previous localization-response operating characteristic (LROC) study using the same images, indicating that location uncertainty is not the sole source of the changes in detection accuracy.

20.
Artigo em Inglês | MEDLINE | ID: mdl-19412357

RESUMO

We compare the image quality of SPECT reconstruction with and without an anatomical prior. Area under the localization-response operating characteristic (LROC) curve is our figure of merit. Simulated Ga-67 citrate images, a SPECT lymph-nodule imaging agent, were generated using the MCAT digital phantom. Reconstructed images were read by human observers.Several reconstruction strategies are compared, including rescaled block iterative (RBI) and maximum-a-posteriori (MAP) with various priors. We find that MAP reconstruction using prior knowledge of organ and lesion boundaries significantly improves lesion-detection performance (p < 0.05). Pseudo-lesion boundaries, regions without increased uptake which are incorrectly treated as prior knowledge of lesion boundaries, do not decrease performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...