Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(9): 2276-2292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385867

RESUMO

Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.


Assuntos
Diferenciação Celular , Proliferação de Células , Corticosterona , Glucocorticoides , Camundongos Endogâmicos C57BL , Bainha de Mielina , Oligodendroglia , Animais , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Glucocorticoides/farmacologia , Corticosterona/farmacologia , Camundongos Endogâmicos DBA , Células Cultivadas , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Patrimônio Genético , Masculino , Linhagem da Célula/efeitos dos fármacos , Estresse Psicológico/metabolismo
2.
Front Genet ; 14: 1173376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260777

RESUMO

Anxiety is an evolutionarily conserved response that is essential for survival. Pathological anxiety, however, is a maladaptive response to nonthreatening situations and greatly affects quality of life. The recent COVID-19 pandemic has increased the prevalence of anxiety symptoms and highlighted the urge to identify the molecular events that initiate pathological anxiety. To this aim, we investigated the extent of similarity of brain region-specific gene expression patterns associated with innate and stress-induced anxiety-like behavior. We compared the cortico-frontal (FCx) and hippocampal (Hpc) gene expression patterns of five inbred mouse strains with high or low levels of innate anxiety-like behavior with gene expression patterns of mice subjected to chronic social defeat stress. We found significantly large overlap of the Hpc but small overlap of the FCx gene expression patterns in innate and stress-induced anxiety, that however, converged onto common inflammation and immune system canonical pathways. Comparing the gene expression data with drug-gene interaction datasets revealed drug candidates, including medrysone, simvastatin, captopril, and sulpiride, that produced gene expression changes opposite to those observed in innate or stress-induced anxiety-like behavior. Together, our data provide a comprehensive overview of FCx and Hpc gene expression differences between innate and stress-induced anxiety and support the role of inflammation and immune system in anxiety-like behavior.

3.
Neuropsychopharmacology ; 48(10): 1532-1540, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36949148

RESUMO

Differential expression of myelin-related genes and changes in myelin thickness have been demonstrated in mice after chronic psychosocial stress, a risk factor for anxiety disorders. To determine whether and how stress affects structural remodeling of nodes of Ranvier, another form of myelin plasticity, we developed a 3D reconstruction analysis of node morphology in C57BL/6NCrl and DBA/2NCrl mice. We identified strain-dependent effects of chronic social defeat stress on node morphology in the medial prefrontal cortex (mPFC) gray matter, including shortening of paranodes in C57BL/6NCrl stress-resilient and shortening of node gaps in DBA/2NCrl stress-susceptible mice compared to controls. Neuronal activity has been associated with changes in myelin thickness. To investigate whether neuronal activation is a mechanism influencing also node of Ranvier morphology, we used DREADDs to repeatedly activate the ventral hippocampus-to-mPFC pathway. We found reduced anxiety-like behavior and shortened paranodes specifically in stimulated, but not in the nearby non-stimulated axons. Altogether, our data demonstrate (1) nodal remodeling of the mPFC gray matter axons after chronic stress and (2) axon-specific regulation of paranodes in response to repeated neuronal activity in an anxiety-associated pathway. Nodal remodeling may thus contribute to aberrant circuit function associated with anxiety disorders.


Assuntos
Transtornos de Ansiedade , Ansiedade , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Ansiedade/metabolismo , Transtornos de Ansiedade/metabolismo , Estresse Psicológico/metabolismo , Córtex Pré-Frontal/metabolismo
4.
eNeuro ; 7(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32788298

RESUMO

NETO2 is an auxiliary subunit for kainate-type glutamate receptors that mediate normal cued fear expression and extinction. Since the amygdala is critical for these functions, we asked whether Neto2-/- mice have compromised amygdala function. We measured the abundance of molecular markers of neuronal maturation and plasticity, parvalbumin-positive (PV+), perineuronal net-positive (PNN+), and double positive (PV+PNN+) cells in the Neto2-/- amygdala. We found that Neto2-/- adult, but not postnatal day (P)23, mice had 7.5% reduction in the fraction of PV+PNN+ cells within the total PNN+ population, and 23.1% reduction in PV staining intensity compared with Neto2+/+ mice, suggesting that PV interneurons in the adult Neto2-/- amygdala remain in an immature state. An immature PV inhibitory network would be predicted to lead to stronger amygdalar excitation. In the amygdala of adult Neto2-/- mice, we identified increased glutamatergic and reduced GABAergic transmission using whole-cell patch-clamp recordings. This was accompanied by increased spine density of thin dendrites in the basal amygdala (BA) compared with Neto2+/+ mice, indicating stronger glutamatergic synapses. Moreover, after fear acquisition Neto2-/- mice had a higher number of c-Fos-positive cells than Neto2+/+ mice in the lateral amygdala (LA), BA, and central amygdala (CE). Altogether, our findings indicate that Neto2 is involved in the maturation of the amygdala PV interneuron network. Our data suggest that this defect, together with other processes influencing amygdala principal neurons, contribute to increased amygdalar excitability, higher fear expression, and delayed extinction in cued fear conditioning, phenotypes that are common in fear-related disorders, including the posttraumatic stress disorder (PTSD).


Assuntos
Medo , Receptores de Ácido Caínico , Tonsila do Cerebelo/metabolismo , Animais , Interneurônios/metabolismo , Proteínas de Membrana , Camundongos , Parvalbuminas/metabolismo , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...