Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
PLoS One ; 19(6): e0303261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38885227

RESUMO

Drug-induced QT prolongation (diLQTS), and subsequent risk of torsade de pointes, is a major concern with use of many medications, including for non-cardiac conditions. The possibility that genetic risk, in the form of polygenic risk scores (PGS), could be integrated into prediction of risk of diLQTS has great potential, although it is unknown how genetic risk is related to clinical risk factors as might be applied in clinical decision-making. In this study, we examined the PGS for QT interval in 2500 subjects exposed to a known QT-prolonging drug on prolongation of the QT interval over 500ms on subsequent ECG using electronic health record data. We found that the normalized QT PGS was higher in cases than controls (0.212±0.954 vs. -0.0270±1.003, P = 0.0002), with an unadjusted odds ratio of 1.34 (95%CI 1.17-1.53, P<0.001) for association with diLQTS. When included with age and clinical predictors of QT prolongation, we found that the PGS for QT interval provided independent risk prediction for diLQTS, in which the interaction for high-risk diagnosis or with certain high-risk medications (amiodarone, sotalol, and dofetilide) was not significant, indicating that genetic risk did not modify the effect of other risk factors on risk of diLQTS. We found that a high-risk cutoff (QT PGS ≥ 2 standard deviations above mean), but not a low-risk cutoff, was associated with risk of diLQTS after adjustment for clinical factors, and provided one method of integration based on the decision-tree framework. In conclusion, we found that PGS for QT interval is an independent predictor of diLQTS, but that in contrast to existing theories about repolarization reserve as a mechanism of increasing risk, the effect is independent of other clinical risk factors. More work is needed for external validation in clinical decision-making, as well as defining the mechanism through which genes that increase QT interval are associated with risk of diLQTS.


Assuntos
Eletrocardiografia , Síndrome do QT Longo , Herança Multifatorial , Humanos , Masculino , Feminino , Síndrome do QT Longo/genética , Síndrome do QT Longo/induzido quimicamente , Pessoa de Meia-Idade , Herança Multifatorial/genética , Fatores de Risco , Idoso , Adulto , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/genética , Estudos de Casos e Controles , Fenetilaminas/efeitos adversos , Estratificação de Risco Genético , Sulfonamidas
2.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38766180

RESUMO

Genetic summary data are broadly accessible and highly useful including for risk prediction, causal inference, fine mapping, and incorporation of external controls. However, collapsing individual-level data into groups masks intra- and inter-sample heterogeneity, leading to confounding, reduced power, and bias. Ultimately, unaccounted substructure limits summary data usability, especially for understudied or admixed populations. Here, we present Summix2, a comprehensive set of methods and software based on a computationally efficient mixture model to estimate and adjust for substructure in genetic summary data. In extensive simulations and application to public data, Summix2 characterizes finer-scale population structure, identifies ascertainment bias, and identifies potential regions of selection due to local substructure deviation. Summix2 increases the robust use of diverse publicly available summary data resulting in improved and more equitable research.

3.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766004

RESUMO

Haplotype phasing, the process of determining which genetic variants are physically located on the same chromosome, is crucial for various genetic analyses. In this study, we first benchmark SHAPEIT and Beagle, two state-of-the-art phasing methods, on two large datasets: > 8 million diverse, research-consented 23andMe, Inc. customers and the UK Biobank (UKB). We find that both perform exceptionally well. Beagle's median switch error rate (SER) (after excluding single SNP switches) in white British trios from UKB is 0.026% compared to 0.00% for European ancestry 23andMe research participants; 55.6% of European ancestry 23andMe research participants have zero non-single SNP switches, compared to 42.4% of white British trios. South Asian ancestry 23andMe research participants have the highest median SER amongst the 23andMe populations, but it is still remarkably low at 0.46%. We also investigate the relationship between identity-by-descent (IBD) and SER, finding that switch errors tend to occur in regions of little or no IBD segment coverage. SHAPEIT and Beagle excel at 'intra-chromosomal' phasing, but lack the ability to phase across chromosomes, motivating us to develop an inter-chromosomal phasing method, called HAPTIC ( HAP lotype TI ling and C lustering), that assigns paternal and maternal variants discretely genome-wide. Our approach uses identity-by-descent (IBD) segments to phase blocks of variants on different chromosomes. HAPTIC represents the segments a focal individual shares with their relatives as nodes in a signed graph and performs bipartite clustering on the signed graph using spectral clustering. We test HAPTIC on 1022 UKB trios, yielding a median phase error of 0.08% in regions covered by IBD segments (33.5% of sites). We also ran HAPTIC in the 23andMe database and found a median phase error rate (the rate of mismatching alleles between the inferred and true phase) of 0.92% in Europeans (93.8% of sites) and 0.09% in admixed Africans (92.7% of sites). HAPTIC's precision depends heavily on data from relatives, so will increase as datasets grow larger and more diverse. HAPTIC enables analyses that require the parent-of-origin of variants, such as association studies and ancestry inference of untyped parents.

4.
Cell Genom ; 4(4): 100539, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604127

RESUMO

Polygenic risk scores (PRSs) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in summary statistics from genome-wide association studies (GWASs) across multiple ancestry groups via Bayesian hierarchical modeling and ensemble learning. In our simulation studies and data analyses across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. For example, MUSSEL has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, trait architecture, and linkage disequilibrium reference samples; thus, ultimately a combination of methods may be needed to generate the most robust PRSs across diverse populations.


Assuntos
Bivalves , Herança Multifatorial , Humanos , Animais , Herança Multifatorial/genética , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Fenótipo , Estratificação de Risco Genético
5.
Am J Hum Genet ; 111(1): 11-23, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181729

RESUMO

Precision medicine initiatives across the globe have led to a revolution of repositories linking large-scale genomic data with electronic health records, enabling genomic analyses across the entire phenome. Many of these initiatives focus solely on research insights, leading to limited direct benefit to patients. We describe the biobank at the Colorado Center for Personalized Medicine (CCPM Biobank) that was jointly developed by the University of Colorado Anschutz Medical Campus and UCHealth to serve as a unique, dual-purpose research and clinical resource accelerating personalized medicine. This living resource currently has more than 200,000 participants with ongoing recruitment. We highlight the clinical, laboratory, regulatory, and HIPAA-compliant informatics infrastructure along with our stakeholder engagement, consent, recontact, and participant engagement strategies. We characterize aspects of genetic and geographic diversity unique to the Rocky Mountain region, the primary catchment area for CCPM Biobank participants. We leverage linked health and demographic information of the CCPM Biobank participant population to demonstrate the utility of the CCPM Biobank to replicate complex trait associations in the first 33,674 genotyped individuals across multiple disease domains. Finally, we describe our current efforts toward return of clinical genetic test results, including high-impact pathogenic variants and pharmacogenetic information, and our broader goals as the CCPM Biobank continues to grow. Bringing clinical and research interests together fosters unique clinical and translational questions that can be addressed from the large EHR-linked CCPM Biobank resource within a HIPAA- and CLIA-certified environment.


Assuntos
Sistema de Aprendizagem em Saúde , Medicina de Precisão , Humanos , Bancos de Espécimes Biológicos , Colorado , Genômica
6.
J Clin Endocrinol Metab ; 109(2): 402-412, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37683082

RESUMO

CONTEXT: Thyroid nodule ultrasound-based risk stratification schemas rely on the presence of high-risk sonographic features. However, some malignant thyroid nodules have benign appearance on thyroid ultrasound. New methods for thyroid nodule risk assessment are needed. OBJECTIVE: We investigated polygenic risk score (PRS) accounting for inherited thyroid cancer risk combined with ultrasound-based analysis for improved thyroid nodule risk assessment. METHODS: The convolutional neural network classifier was trained on thyroid ultrasound still images and cine clips from 621 thyroid nodules. Phenome-wide association study (PheWAS) and PRS PheWAS were used to optimize PRS for distinguishing benign and malignant nodules. PRS was evaluated in 73 346 participants in the Colorado Center for Personalized Medicine Biobank. RESULTS: When the deep learning model output was combined with thyroid cancer PRS and genetic ancestry estimates, the area under the receiver operating characteristic curve (AUROC) of the benign vs malignant thyroid nodule classifier increased from 0.83 to 0.89 (DeLong, P value = .007). The combined deep learning and genetic classifier achieved a clinically relevant sensitivity of 0.95, 95% CI [0.88-0.99], specificity of 0.63 [0.55-0.70], and positive and negative predictive values of 0.47 [0.41-0.58] and 0.97 [0.92-0.99], respectively. AUROC improvement was consistent in European ancestry-stratified analysis (0.83 and 0.87 for deep learning and deep learning combined with PRS classifiers, respectively). Elevated PRS was associated with a greater risk of thyroid cancer structural disease recurrence (ordinal logistic regression, P value = .002). CONCLUSION: Augmenting ultrasound-based risk assessment with PRS improves diagnostic accuracy.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/genética , Estratificação de Risco Genético , Sensibilidade e Especificidade , Recidiva Local de Neoplasia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/genética , Ultrassonografia/métodos
7.
mSystems ; 9(1): e0067723, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38095449

RESUMO

Inflammatory bowel disease (IBD) is characterized by complex etiology and a disrupted colonic ecosystem. We provide a framework for the analysis of multi-omic data, which we apply to study the gut ecosystem in IBD. Specifically, we train and validate models using data on the metagenome, metatranscriptome, virome, and metabolome from the Human Microbiome Project 2 IBD multi-omic database, with 1,785 repeated samples from 130 individuals (103 cases and 27 controls). After splitting the participants into training and testing groups, we used mixed-effects least absolute shrinkage and selection operator regression to select features for each omic. These features, with demographic covariates, were used to generate separate single-omic prediction scores. All four single-omic scores were then combined into a final regression to assess the relative importance of the individual omics and the predictive benefits when considered together. We identified several species, pathways, and metabolites known to be associated with IBD risk, and we explored the connections between data sets. Individually, metabolomic and viromic scores were more predictive than metagenomics or metatranscriptomics, and when all four scores were combined, we predicted disease diagnosis with a Nagelkerke's R2 of 0.46 and an area under the curve of 0.80 (95% confidence interval: 0.63, 0.98). Our work supports that some single-omic models for complex traits are more predictive than others, that incorporating multiple omic data sets may improve prediction, and that each omic data type provides a combination of unique and redundant information. This modeling framework can be extended to other complex traits and multi-omic data sets.IMPORTANCEComplex traits are characterized by many biological and environmental factors, such that multi-omic data sets are well-positioned to help us understand their underlying etiologies. We applied a prediction framework across multiple omics (metagenomics, metatranscriptomics, metabolomics, and viromics) from the gut ecosystem to predict inflammatory bowel disease (IBD) diagnosis. The predicted scores from our models highlighted key features and allowed us to compare the relative utility of each omic data set in single-omic versus multi-omic models. Our results emphasized the importance of metabolomics and viromics over metagenomics and metatranscriptomics for predicting IBD status. The greater predictive capability of metabolomics and viromics is likely because these omics serve as markers of lifestyle factors such as diet. This study provides a modeling framework for multi-omic data, and our results show the utility of combining multiple omic data types to disentangle complex disease etiologies and biological signatures.


Assuntos
Doenças Inflamatórias Intestinais , Microbiota , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Metagenômica/métodos , Fenótipo , Fatores de Risco
8.
J Community Genet ; 14(6): 543-553, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962783

RESUMO

Genome-wide association studies (GWAS) have allowed the identification of disease-associated variants, which can be leveraged to build polygenic scores (PGSs). Even though PGSs can be a valuable tool in personalized medicine, their predictive power is limited in populations of non-European ancestry, particularly in admixed populations. Recent efforts have focused on increasing racial and ethnic diversity in GWAS, thus, addressing some of the limitations of genetic risk prediction in these populations. Even with these efforts, few studies focus exclusively on Hispanics/Latinos. Additionally, Hispanic/Latino populations are often considered a single population despite varying admixture proportions between and within ethnic groups, diverse genetic heterogeneity, and demographic history. Combined with highly heterogeneous environmental and socioeconomic exposures, this diversity can reduce the transferability of genetic risk prediction models. Given the recent increase of genomic studies that include Hispanics/Latinos, we review the milestones and efforts that focus on genetic risk prediction, summarize the potential for improving PGS transferability, and highlight the challenges yet to be addressed. Additionally, we summarize social-ethical considerations and provide ideas to promote genetic risk prediction models that can be implemented equitably.

9.
Nature ; 622(7984): 775-783, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821706

RESUMO

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Assuntos
Bancos de Espécimes Biológicos , Genética Médica , Genoma Humano , Genômica , Hispânico ou Latino , Humanos , Glicemia/genética , Glicemia/metabolismo , Estatura/genética , Índice de Massa Corporal , Interação Gene-Ambiente , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/classificação , Hispânico ou Latino/genética , Homozigoto , México , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/genética , Reino Unido , Genoma Humano/genética
10.
Am J Hum Genet ; 110(11): 1853-1862, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875120

RESUMO

The heritability explained by local ancestry markers in an admixed population (hγ2) provides crucial insight into the genetic architecture of a complex disease or trait. Estimation of hγ2 can be susceptible to biases due to population structure in ancestral populations. Here, we present heritability estimation from admixture mapping summary statistics (HAMSTA), an approach that uses summary statistics from admixture mapping to infer heritability explained by local ancestry while adjusting for biases due to ancestral stratification. Through extensive simulations, we demonstrate that HAMSTA hγ2 estimates are approximately unbiased and are robust to ancestral stratification compared to existing approaches. In the presence of ancestral stratification, we show a HAMSTA-derived sampling scheme provides a calibrated family-wise error rate (FWER) of ∼5% for admixture mapping, unlike existing FWER estimation approaches. We apply HAMSTA to 20 quantitative phenotypes of up to 15,988 self-reported African American individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study. We observe hˆγ2 in the 20 phenotypes range from 0.0025 to 0.033 (mean hˆγ2 = 0.012 ± 9.2 × 10-4), which translates to hˆ2 ranging from 0.062 to 0.85 (mean hˆ2 = 0.30 ± 0.023). Across these phenotypes we find little evidence of inflation due to ancestral population stratification in current admixture mapping studies (mean inflation factor of 0.99 ± 0.001). Overall, HAMSTA provides a fast and powerful approach to estimate genome-wide heritability and evaluate biases in test statistics of admixture mapping studies.


Assuntos
Negro ou Afro-Americano , Genética Populacional , Humanos , Mapeamento Cromossômico , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
11.
Hum Genet ; 142(10): 1477-1489, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37658231

RESUMO

Inadequate representation of non-European ancestry populations in genome-wide association studies (GWAS) has limited opportunities to isolate functional variants. Fine-mapping in multi-ancestry populations should improve the efficiency of prioritizing variants for functional interrogation. To evaluate this hypothesis, we leveraged ancestry architecture to perform comparative GWAS and fine-mapping of obesity-related phenotypes in European ancestry populations from the UK Biobank (UKBB) and multi-ancestry samples from the Population Architecture for Genetic Epidemiology (PAGE) consortium with comparable sample sizes. In the investigated regions with genome-wide significant associations for obesity-related traits, fine-mapping in our ancestrally diverse sample led to 95% and 99% credible sets (CS) with fewer variants than in the European ancestry sample. Lead fine-mapped variants in PAGE regions had higher average coding scores, and higher average posterior probabilities for causality compared to UKBB. Importantly, 99% CS in PAGE loci contained strong expression quantitative trait loci (eQTLs) in adipose tissues or harbored more variants in tighter linkage disequilibrium (LD) with eQTLs. Leveraging ancestrally diverse populations with heterogeneous ancestry architectures, coupled with functional annotation, increased fine-mapping efficiency and performance, and reduced the set of candidate variants for consideration for future functional studies. Significant overlap in genetic causal variants across populations suggests generalizability of genetic mechanisms underpinning obesity-related traits across populations.


Assuntos
Estudo de Associação Genômica Ampla , Obesidade , Humanos , Epidemiologia Molecular , Desequilíbrio de Ligação , Obesidade/genética , Locos de Características Quantitativas/genética
12.
Front Genet ; 14: 1181167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600667

RESUMO

Peripheral artery disease (PAD) is a form of atherosclerotic cardiovascular disease, affecting ∼8 million Americans, and is known to have racial and ethnic disparities. PAD has been reported to have a significantly higher prevalence in African Americans (AAs) compared to non-Hispanic European Americans (EAs). Hispanic/Latinos (HLs) have been reported to have lower or similar rates of PAD compared to EAs, despite having a paradoxically high burden of PAD risk factors; however, recent work suggests prevalence may differ between sub-groups. Here, we examined a large cohort of diverse adults in the BioMe biobank in New York City. We observed the prevalence of PAD at 1.7% in EAs vs. 8.5% and 9.4% in AAs and HLs, respectively, and among HL sub-groups, the prevalence was found at 11.4% and 11.5% in Puerto Rican and Dominican populations, respectively. Follow-up analysis that adjusted for common risk factors demonstrated that Dominicans had the highest increased risk for PAD relative to EAs [OR = 3.15 (95% CI 2.33-4.25), p < 6.44 × 10-14]. To investigate whether genetic factors may explain this increased risk, we performed admixture mapping by testing the association between local ancestry and PAD in Dominican BioMe participants (N = 1,813) separately from European, African, and Native American (NAT) continental ancestry tracts. The top association with PAD was an NAT ancestry tract at chromosome 2q35 [OR = 1.96 (SE = 0.16), p < 2.75 × 10-05) with 22.6% vs. 12.9% PAD prevalence in heterozygous NAT tract carriers versus non-carriers, respectively. Fine-mapping at this locus implicated tag SNP rs78529201 located within a long intergenic non-coding RNA (lincRNA) LINC00607, a gene expression regulator of key genes related to thrombosis and extracellular remodeling of endothelial cells, suggesting a putative link of the 2q35 locus to PAD etiology. Efforts to reproduce the signal in other Hispanic cohorts were unsuccessful. In summary, we showed how leveraging health system data helped understand nuances of PAD risk across HL sub-groups and admixture mapping approaches elucidated a putative risk locus in a Dominican population.

13.
Open Heart ; 10(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37648373

RESUMO

INTRODUCTION: The independent and causal cardiovascular disease risk factor lipoprotein(a) (Lp(a)) is elevated in >1.5 billion individuals worldwide, but studies have prioritised European populations. METHODS: Here, we examined how ancestrally diverse studies could clarify Lp(a)'s genetic architecture, inform efforts examining application of Lp(a) polygenic risk scores (PRS), enable causal inference and identify unexpected Lp(a) phenotypic effects using data from African (n=25 208), East Asian (n=2895), European (n=362 558), South Asian (n=8192) and Hispanic/Latino (n=8946) populations. RESULTS: Fourteen genome-wide significant loci with numerous population specific signals of large effect were identified that enabled construction of Lp(a) PRS of moderate (R2=15% in East Asians) to high (R2=50% in Europeans) accuracy. For all populations, PRS showed promise as a 'rule out' for elevated Lp(a) because certainty of assignment to the low-risk threshold was high (88.0%-99.9%) across PRS thresholds (80th-99th percentile). Causal effects of increased Lp(a) with increased glycated haemoglobin were estimated for Europeans (p value =1.4×10-6), although inverse effects in Africans and East Asians suggested the potential for heterogeneous causal effects. Finally, Hispanic/Latinos were the only population in which known associations with coronary atherosclerosis and ischaemic heart disease were identified in external testing of Lp(a) PRS phenotypic effects. CONCLUSIONS: Our results emphasise the merits of prioritising ancestral diversity when addressing Lp(a) evidence gaps.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Humanos , Lipoproteína(a)/genética , Lacunas de Evidências , Fatores de Risco , Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética
14.
Nat Med ; 29(7): 1845-1856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37464048

RESUMO

An individual's disease risk is affected by the populations that they belong to, due to shared genetics and environmental factors. The study of fine-scale populations in clinical care is important for identifying and reducing health disparities and for developing personalized interventions. To assess patterns of clinical diagnoses and healthcare utilization by fine-scale populations, we leveraged genetic data and electronic medical records from 35,968 patients as part of the UCLA ATLAS Community Health Initiative. We defined clusters of individuals using identity by descent, a form of genetic relatedness that utilizes shared genomic segments arising due to a common ancestor. In total, we identified 376 clusters, including clusters with patients of Afro-Caribbean, Puerto Rican, Lebanese Christian, Iranian Jewish and Gujarati ancestry. Our analysis uncovered 1,218 significant associations between disease diagnoses and clusters and 124 significant associations with specialty visits. We also examined the distribution of pathogenic alleles and found 189 significant alleles at elevated frequency in particular clusters, including many that are not regularly included in population screening efforts. Overall, this work progresses the understanding of health in understudied communities and can provide the foundation for further study into health inequities.


Assuntos
Atenção à Saúde , Aceitação pelo Paciente de Cuidados de Saúde , Humanos , Los Angeles , Irã (Geográfico) , Etnicidade
15.
Nat Genet ; 55(6): 952-963, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231098

RESUMO

We explored ancestry-related differences in the genetic architecture of whole-blood gene expression using whole-genome and RNA sequencing data from 2,733 African Americans, Puerto Ricans and Mexican Americans. We found that heritability of gene expression significantly increased with greater proportions of African genetic ancestry and decreased with higher proportions of Indigenous American ancestry, reflecting the relationship between heterozygosity and genetic variance. Among heritable protein-coding genes, the prevalence of ancestry-specific expression quantitative trait loci (anc-eQTLs) was 30% in African ancestry and 8% for Indigenous American ancestry segments. Most anc-eQTLs (89%) were driven by population differences in allele frequency. Transcriptome-wide association analyses of multi-ancestry summary statistics for 28 traits identified 79% more gene-trait associations using transcriptome prediction models trained in our admixed population than models trained using data from the Genotype-Tissue Expression project. Our study highlights the importance of measuring gene expression across large and ancestrally diverse populations for enabling new discoveries and reducing disparities.


Assuntos
Negro ou Afro-Americano , Hispânico ou Latino , Americanos Mexicanos , Humanos , Negro ou Afro-Americano/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Americanos Mexicanos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Transcriptoma
16.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131817

RESUMO

The heritability explained by local ancestry markers in an admixed population hγ2 provides crucial insight into the genetic architecture of a complex disease or trait. Estimation of hγ2 can be susceptible to biases due to population structure in ancestral populations. Here, we present a novel approach, Heritability estimation from Admixture Mapping Summary STAtistics (HAMSTA), which uses summary statistics from admixture mapping to infer heritability explained by local ancestry while adjusting for biases due to ancestral stratification. Through extensive simulations, we demonstrate that HAMSTA hγ2 estimates are approximately unbiased and are robust to ancestral stratification compared to existing approaches. In the presence of ancestral stratification, we show a HAMSTA-derived sampling scheme provides a calibrated family-wise error rate (FWER) of ~5% for admixture mapping, unlike existing FWER estimation approaches. We apply HAMSTA to 20 quantitative phenotypes of up to 15,988 self-reported African American individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study. We observe hˆγ2 in the 20 phenotypes range from 0.0025 to 0.033 (mean hˆγ2=0.012+/-9.2×10-4), which translates to hˆ2 ranging from 0.062 to 0.85 (mean hˆ2=0.30+/-0.023). Across these phenotypes we find little evidence of inflation due to ancestral population stratification in current admixture mapping studies (mean inflation factor of 0.99 +/- 0.001). Overall, HAMSTA provides a fast and powerful approach to estimate genome-wide heritability and evaluate biases in test statistics of admixture mapping studies.

17.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37090648

RESUMO

Polygenic risk scores (PRS) are now showing promising predictive performance on a wide variety of complex traits and diseases, but there exists a substantial performance gap across different populations. We propose MUSSEL, a method for ancestry-specific polygenic prediction that borrows information in the summary statistics from genome-wide association studies (GWAS) across multiple ancestry groups. MUSSEL conducts Bayesian hierarchical modeling under a MUltivariate Spike-and-Slab model for effect-size distribution and incorporates an Ensemble Learning step using super learner to combine information across different tuning parameter settings and ancestry groups. In our simulation studies and data analyses of 16 traits across four distinct studies, totaling 5.7 million participants with a substantial ancestral diversity, MUSSEL shows promising performance compared to alternatives. The method, for example, has an average gain in prediction R2 across 11 continuous traits of 40.2% and 49.3% compared to PRS-CSx and CT-SLEB, respectively, in the African Ancestry population. The best-performing method, however, varies by GWAS sample size, target ancestry, underlying trait architecture, and the choice of reference samples for LD estimation, and thus ultimately, a combination of methods may be needed to generate the most robust PRS across diverse populations.

18.
medRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034679

RESUMO

Peripheral artery disease (PAD) is a form of atherosclerotic cardiovascular disease, affecting ∼8 million Americans, and is known to have racial and ethnic disparities. PAD has been reported to have significantly higher prevalence in African Americans (AAs) compared to non-Hispanic European Americans (EAs). Hispanic/Latinos (HLs) have been reported to have lower or similar rates of PAD compared to EAs, despite having a paradoxically high burden of PAD risk factors, however recent work suggests prevalence may differ between sub-groups. Here we examined a large cohort of diverse adults in the Bio Me biobank in New York City (NYC). We observed the prevalence of PAD at 1.7% in EAs vs 8.5% and 9.4% in AAs and HLs, respectively; and among HL sub-groups, at 11.4% and 11.5% in Puerto Rican and Dominican populations, respectively. Follow-up analysis that adjusted for common risk factors demonstrated that Dominicans had the highest increased risk for PAD relative to EAs (OR=3.15 (95% CI 2.33-4.25), P <6.44×10 -14 ). To investigate whether genetic factors may explain this increased risk, we performed admixture mapping by testing the association between local ancestry (LA) and PAD in Dominican Bio Me participants (N=1,940) separately for European (EUR), African (AFR) and Native American (NAT) continental ancestry tracts. We identified a NAT ancestry tract at chromosome 2q35 that was significantly associated with PAD (OR=2.05 (95% CI 1.51-2.78), P <4.06×10 -6 ) with 22.5% vs 12.5% PAD prevalence in heterozygous NAT tract carriers versus non-carriers, respectively. Fine-mapping at this locus implicated tag SNP rs78529201 located within a long intergenic non-coding RNA (lincRNA) LINC00607 , a gene expression regulator of key genes related to thrombosis and extracellular remodeling of endothelial cells, suggesting a putative link of the 2q35 locus to PAD etiology. In summary, we showed how leveraging health systems data helped understand nuances of PAD risk across HL sub-groups and admixture mapping approaches elucidated a novel risk locus in a Dominican population.

20.
Artigo em Inglês | MEDLINE | ID: mdl-36767733

RESUMO

Over 6.37 million people have died from COVID-19 worldwide, but factors influencing COVID-19-related mortality remain understudied. We aimed to describe and identify risk factors for COVID-19 mortality in the Colorado Center for Personalized Medicine (CCPM) Biobank using integrated data sources, including Electronic Health Records (EHRs). We calculated cause-specific mortality and case-fatality rates for COVID-19 and common pre-existing health conditions defined by diagnostic phecodes and encounters in EHRs. We performed multivariable logistic regression analyses of the association between each pre-existing condition and COVID-19 mortality. Of the 155,859 Biobank participants enrolled as of July 2022, 20,797 had been diagnosed with COVID-19. Of 5334 Biobank participants who had died, 190 were attributed to COVID-19. The case-fatality rate was 0.91% and the COVID-19 mortality rate was 122 per 100,000 persons. The odds of dying from COVID-19 were significantly increased among older men, and those with 14 of the 61 pre-existing conditions tested, including hypertensive chronic kidney disease (OR: 10.14, 95% CI: 5.48, 19.16) and type 2 diabetes with renal manifestations (OR: 5.59, 95% CI: 3.42, 8.97). Male patients who are older and have pre-existing kidney diseases may be at higher risk for death from COVID-19 and may require special care.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Idoso , Diabetes Mellitus Tipo 2/epidemiologia , SARS-CoV-2 , Colorado/epidemiologia , Bancos de Espécimes Biológicos , Medicina de Precisão , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...