Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114084, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583154

RESUMO

Eosinophils play a crucial role in host defense while also contributing to immunopathology through the release of inflammatory mediators. Characterized by distinctive cytoplasmic granules, eosinophils securely store and rapidly release various proteins exhibiting high toxicity upon extracellular release. Among these, major basic protein 1 (MBP-1) emerges as an important mediator in eosinophil function against pathogens and in eosinophil-associated diseases. While MBP-1 targets both microorganisms and host cells, its precise mechanism remains elusive. We demonstrate that formation of small pores by MBP-1 in lipid bilayers induces membrane permeabilization and disrupts potassium balance. Additionally, we reveal that mitochondrial DNA (mtDNA) present in eosinophil extracellular traps (EETs) amplifies MBP-1 toxic effects, underscoring the pivotal role of mtDNA in EETs. Furthermore, we present evidence indicating that absence of CpG methylation in mtDNA contributes to the regulation of MBP-1-mediated toxicity. Taken together, our data suggest that the mtDNA scaffold within extracellular traps promotes MBP-1 toxicity.


Assuntos
DNA Mitocondrial , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Humanos , Animais , Armadilhas Extracelulares/metabolismo , Membrana Celular/metabolismo , Eosinófilos/metabolismo , Metilação de DNA , Ilhas de CpG , Bicamadas Lipídicas/metabolismo
2.
Cells ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391935

RESUMO

Macrophages play a crucial role in the innate immune response, serving as key effector cells in the defense against pathogens. Although the role of the large-conductance voltage and calcium-activated potassium channel, also known as the KCa1.1 or BK channel, in regulating neurotransmitter release and smooth muscle contraction is well known, its potential involvement in immune regulation remains unclear. We employed BK-knockout macrophages and noted that the absence of a BK channel promotes the polarization of macrophages towards a pro-inflammatory phenotype known as M1 macrophages. Specifically, the absence of the BK channel resulted in a significant increase in the secretion of the pro-inflammatory cytokine IL-6 and enhanced the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2 kinases), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the transcription factor ATF-1 within M1 macrophages. Additionally, the lack of the BK channel promoted the activation of the AIM2 inflammasome without affecting the activation of the NLRC4 and NLRP3 inflammasomes. To further investigate the role of the BK channel in regulating AIM2 inflammasome activation, we utilized BK channel inhibitors, such as paxilline and iberiotoxin, along with the BK channel activator NS-11021. Pharmacological inactivation of the BK channel increased, and its stimulation inhibited IL-1ß production following AIM2 inflammasome activation in wild-type macrophages. Moreover, wild-type macrophages displayed increased calcium influx when activated with the AIM2 inflammasome, whereas BK-knockout macrophages did not due to the impaired extracellular calcium influx upon activation. Furthermore, under conditions of a calcium-free medium, IL-1ß production following AIM2 inflammasome activation was increased in both wild-type and BK-knockout macrophages. This suggests that the BK channel is required for the influx of extracellular calcium in macrophages, thus limiting AIM2 inflammasome activation. In summary, our study reveals a regulatory role of the BK channel in macrophages under inflammatory conditions.


Assuntos
Inflamassomos , Canais de Potássio Ativados por Cálcio de Condutância Alta , Inflamassomos/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Cálcio/metabolismo , Macrófagos/metabolismo , Imunidade Inata , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo
3.
Front Immunol ; 14: 1272699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37885878

RESUMO

Neutrophils are a specialized subset of white blood cells, which have the ability to store pre-formed mediators in their cytoplasmic granules. Neutrophils are well-known effector cells involved in host protection against pathogens through diverse mechanisms such as phagocytosis, degranulation, extracellular traps, and oxidative burst. In this study, we provide evidence highlighting the significance of the SNARE proteins syntaxin-4 and synaptosomal-associated protein (SNAP) 23 in the release of azurophilic granules, specific granules, and the production of reactive oxygen species in human neutrophils. In contrast, the specific blockade of either syntaxin-4 or SNAP23 did not prevent the release of mitochondrial dsDNA in the process of neutrophil extracellular trap (NET) formation. These findings imply that degranulation and the release of mitochondrial dsDNA involve at least partially distinct molecular pathways in neutrophils.


Assuntos
Armadilhas Extracelulares , Proteínas Qa-SNARE , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Humanos , DNA Mitocondrial/metabolismo , Exocitose , Armadilhas Extracelulares/metabolismo , Neutrófilos/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo
4.
Allergy ; 78(7): 1810-1846, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37102676

RESUMO

Eosinophils are bone marrow-derived granulocytes and are found in low numbers in the peripheral blood of healthy subjects. In type 2 inflammatory diseases, eosinopoiesis in the bone marrow is increased, resulting in a rise in the number of mature eosinophils released in the circulation. From the blood, eosinophils can migrate in multiple tissues and organs under both physiological and pathological conditions. Eosinophils exert their various functions through the synthesis and release of a variety of granule proteins and pro-inflammatory mediators. Despite being present in all species of vertebrates, the functional role of eosinophils is still a matter of debate. Eosinophils may play a role in host defense against various pathogens. In addition, eosinophils have been reported to be involved in tissue homeostasis and exhibit immunomodulatory activities. In this review, we aim to provide a broad overview of eosinophil biology and eosinophilic diseases in a lexicon-style format using keywords starting from A until Z with cross-references to other chapters indicated in italics in the text or specified in parentheses.


Assuntos
Eosinófilos , Animais , Humanos , Eosinófilos/fisiologia , Itália
5.
Front Immunol ; 13: 826515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251008

RESUMO

Neutrophils are the most numerous cells in the leukocyte population and essential for innate immunity. To limit their effector functions, neutrophils are able to modulate glycolysis and other cellular metabolic pathways. These metabolic pathways are essential not only for energy usage, but also for specialized effector actions, such as the production of reactive oxygen species (ROS), chemotaxis, phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs). It has been demonstrated that activated viable neutrophils can produce NETs, which consists of a DNA scaffold able to bind granule proteins and microorganisms. The formation of NETs requires the availability of increased amounts of adenosine triphosphate (ATP) as it is an active cellular and therefore energy-dependent process. In this article, we discuss the glycolytic and other metabolic routes in association with neutrophil functions focusing on their role for building up NETs in the extracellular space. A better understanding of the requirements of metabolic pathways for neutrophil functions may lead to the discovery of molecular targets suitable to develop novel anti-infectious and/or anti-inflammatory drugs.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Imunidade Inata , Redes e Vias Metabólicas , Fagocitose
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209362

RESUMO

Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. However, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.


Assuntos
Degranulação Celular , Eosinófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Hipersensibilidade/metabolismo , Eosinófilos/patologia , Humanos , Hipersensibilidade/patologia
7.
Allergol Int ; 70(1): 30-38, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33277190

RESUMO

Neutrophils and eosinophils are granulocytes which are characterized by the presence of granules in the cytoplasm. Granules provide a safe storage site for granule proteins that play important roles in the immune function of granulocytes. Upon granulocytes activation, diverse proteins are released from the granules into the extracellular space and contribute to the fight against infections. In this article, we describe granule proteins of both neutrophils and eosinophils able to kill pathogens and review their anticipated mechanism of antimicrobial toxicity. It should be noted that an excess of granules protein release can lead to tissue damage of the host resulting in chronic inflammation and organ dysfunction.


Assuntos
Comunicação Celular , Citotoxicidade Imunológica , Proteínas Granulares de Eosinófilos/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Neutrófilos/fisiologia , Comunicação Celular/imunologia , Suscetibilidade a Doenças , Espaço Extracelular/imunologia , Espaço Extracelular/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...