Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 335(6074): 1336-40, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22422980

RESUMO

Subcycle strong-field ionization (SFI) underlies many emerging spectroscopic probes of atomic or molecular attosecond electronic dynamics. Extending methods such as attosecond high harmonic generation spectroscopy to complex polyatomic molecules requires an understanding of multielectronic excitations, already hinted at by theoretical modeling of experiments on atoms, diatomics, and triatomics. Here, we present a direct method which, independent of theory, experimentally probes the participation of multiple electronic continua in the SFI dynamics of polyatomic molecules. We use saturated (n-butane) and unsaturated (1,3-butadiene) linear hydrocarbons to show how subcycle SFI of polyatomics can be directly resolved into its distinct electronic-continuum channels by above-threshold ionization photoelectron spectroscopy. Our approach makes use of photoelectron-photofragment coincidences, suiting broad classes of polyatomic molecules.

2.
Rev Sci Instrum ; 80(10): 103105, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19895052

RESUMO

The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256 x 256 square pixels, 55 x 55 microm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 micros. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.

3.
J Phys Chem A ; 111(31): 7631-9, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17542569

RESUMO

Relative integrated cross sections are measured for spin-orbit-conserving, rotationally inelastic scattering of NO (2Pi1/2), hexapole-selected in the upper Lambda-doublet level of the ground rotational state (j = 0.5), in collisions with D2 at a nominal energy of 551 cm-1. The final state of the NO molecule is detected by laser-induced fluorescence (LIF). The state-selected NO molecule is oriented with either the N end or the O end toward the incoming D2 molecule by application of a static electric field E in the scattering region. This field is directed parallel or antiparallel to the relative velocity vector v. Comparison of signals taken for the different applied field directions gives the experimental steric asymmetry SA, defined by SA = (sigma v upward arrow downward arrow E - sigma v upward arrow upward arrow E)/(sigma v upward arrow downward arrow E + sigma v upward arrow upward arrow E), which is equal to within a factor of -1 to the molecular steric effect, Si-->f identical with (sigmaD2-->NO - sigmaD2-->ON)/(sigmaD2-->NO + sigmaD2-->ON). The dependence of the integral inelastic cross section on the incoming Lambda-doublet component is also measured as a function of the final rotational (jfinal) and Lambda-doublet (epsilonfinal) state. The measured steric asymmetries are similar to those previously observed for NO-He scattering. Spin-orbit manifold-conserving collisions exhibit a larger propensity for parity conservation than their NO-He counterparts. The results are interpreted in the context of the recently developed quasi-quantum treatment (QQT) of rotationally inelastic scattering [Gijsbertsen, A.; Linnartz, H.; Taatjes, C. A.; Stolte, S. J. Am. Chem. Soc. 2006, 128, 8777]. The QQT predictions can be inverted to obtain a fitted hard-shell potential that reproduces the experimental steric asymmetry; this fitted potential gives an empirical estimate of the anisotropy of the repulsive interaction between NO and D2. QQT computation of the differential cross section using this simple model potential shows reasonable agreement with the measured differential cross sections.

4.
J Chem Phys ; 125(13): 133112, 2006 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-17029438

RESUMO

The (j', Omega', epsilon') dependent differential collision cross sections of D2 with fully state selected (j = 12, Omega = 12, epsilon = -1) NO have been determined at a collision energy of about 550 cm(-1). The collisionally excited NO molecules are detected by (1+1') resonance enhanced multiphoton ionization combined using velocity-mapped ion-imaging. The results are compared to He-NO scattering results and tend to be more forward scattered for the same final rotational state. Both for collisions of the atomic He and the molecular D2 with NO, scattering into pairs of rotational states with the same value of n = j' - epsilon epsilon'2 yields the same angular dependence of the cross section. This "parity propensity rule" remains present both for spin-orbit conserving and spin-orbit changing transitions. The maxima in the differential cross sections-that reflect rotational rainbows-have been extracted from the D2-NO and the He-NO differential cross sections. These maxima are found to be distinct for odd and even parity pair number n. Rainbow positions of parity changing transitions (n is odd) occur at larger scattering angles than those of parity conserving transitions (n is even). Parity conserving transitions exhibit-from a classical point of view-a larger effective eccentricity of the shell. No rainbow doubling due to collisions onto either the N-end or the O-end was observed. From a classical point of view the presence of a double rainbow is expected. Rotational excitation of the D2 molecules has not been observed.

5.
J Am Chem Soc ; 128(27): 8777-89, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16819871

RESUMO

Rotationally inelastic scattering of rare gas atoms and oriented NO molecules exhibits a remarkable alternation in the sign of steric asymmetry between even and odd changes in rotational quantum number. This effect has also been found in full quantum-mechanical scattering calculations. However, until now no physical picture has been given for the alternation. In this work, a newly developed quasi-quantum treatment (QQT) provides the first demonstration that quantum interferences between different orientations of the repulsive potential (that are present in the oriented wave function) are the source of this alternation. Further, from application of the treatment to collisions of nonoriented molecules, a previously unrecognized propensity rule is derived. The angular dependence of the cross sections for excitation to neighboring rotational states with the same parity is shown to be similar, except for a prefactor. Experimental results are presented to support this rule. Unlike conventional quantum-mechanical (or semiclassical) treatments, QQT requires no summation over the orbital angular momentum quantum number l or integration over the impact parameter b. This eliminates the need to solve large sets of coupled differential equations that couple l and rotational state channels among which interference can occur. The QQT provides a physical interpretation of the scattering amplitude that can be represented by a Legendre moment. Application of the QQT on a simple hard-shell potential leads to near-quantitative agreement with experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...