Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Toxicol ; 6: 1395670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938662

RESUMO

Background: Smoking cigarettes is a cause of serious diseases in smokers, including cardiovascular disease. Through a pathway of endothelial dysfunction, lipid infiltration, macrophage recruitment and vascular remodeling, atherosclerosis is fundamental in the development of most cardiovascular diseases. There is an increasing number of next-generation products (NGP) which provide potentially reduced harm forms of nicotine delivery to adult smokers. This study aimed to optimise an in vitro cardiovascular model to assess such products. Human Coronary Artery Endothelial Cells (HCAECs) were cultured on an OrganoPlate®2-lane chip (Mimetas BV) combined with THP-1 monocytes under flow conditions. Methods: An aqueous aerosol extract from the 1R6F reference cigarette was compared with two categories of NGP, (a heated tobacco product (HTP) and an electronic nicotine delivery system (ENDS)), to assess relative effects on select atherogenic endpoints (oxidative stress, monocyte adhesion, ICAM-1 expression, and inflammatory markers). Following exposure of THP-1 monocytes with the aqueous extracts, the resulting conditioned medium was then added to the HCAEC vessels. Results: 1R6F was consistently the most potent test article, eliciting observed responses at 4x lower concentrations than applied for both the HTP and ENDS. The HTP was more potent than the ENDS product across all endpoints, however, all test articles increased monocyte adhesion. ICAM-1 did not appear to be a main driver for monocyte adhesion, however, this could be due to replicate variability. Upon comparison to an extract-only control exposure, THP-1-medium pre-conditioning was an important mediator of the responses observed. Conclusion: In conclusion, the data suggests that the NGP extracts, containing primary aerosol chemical constituents exhibit a marked reduction in biological activity in the early key events associated with atherogenesis when compared to a cigarette, adding to the weight of evidence for the tobacco harm reduction potential of such products.

2.
Kidney360 ; 3(2): 217-231, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35373131

RESUMO

Background: Renal ischemia/reperfusion injury (rIRI) is one of the major causes of AKI. Although animal models are suitable for investigating systemic symptoms of AKI, they are limited in translatability. Human in vitro models are crucial in giving mechanistic insights into rIRI; however, they miss out on crucial aspects such as reperfusion injury and the multitissue aspect of AKI. Methods: We advanced the current renal proximal tubule-on-a-chip model to a coculture model with a perfused endothelial vessel separated by an extracellular matrix. The coculture was characterized for its three-dimensional structure, protein expression, and response to nephrotoxins. Then, rIRI was captured through control of oxygen levels, nutrient availability, and perfusion flow settings. Injury was quantified through morphologic assessment, caspase-3/7 activation, and cell viability. Results: The combination of low oxygen, reduced glucose, and interrupted flow was potent to disturb the proximal tubules. This effect was strongly amplified upon reperfusion. Endothelial vessels were less sensitive to the ischemia-reperfusion parameters. Adenosine treatment showed a protective effect on the disruption of the epithelium and on the caspase-3/7 activation. Conclusions: A human in vitro rIRI model was developed using a coculture of a proximal tubule and blood vessel on-a-chip, which was used to characterize the renoprotective effect of adenosine. The robustness of the model and assays in combination with the throughput of the platform make it ideal to advance pathophysiological research and enable the development of novel therapeutic modalities.


Assuntos
Injúria Renal Aguda , Dispositivos Lab-On-A-Chip , Injúria Renal Aguda/prevenção & controle , Animais , Humanos , Isquemia/complicações , Túbulos Renais/metabolismo , Reperfusão/efeitos adversos
3.
J Pharm Sci ; 111(1): 214-224, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838780

RESUMO

The aim of this study was to develop an in vitro drug permeability methodology which mimics the gastrointestinal environment more accurately than conventional 2D methodologies through a three-dimensional (3D) Caco-2 tubules using a microphysiological system. Such a system offers significant advantages, including accelerated cellular polarization and more accurate mimicry of the in vivo environment. This methodology was confirmed by measuring the permeability of propranolol as a model compound, and subsequently applied to those of solifenacin and bile acids for a comprehensive understanding of permeability for the drug product in the human gastrointestinal tract. To protect the Caco-2 tubules from bile acid toxicity, a mucus layer was applied on the surface of Caco-2 tubules and it enables to use simulated intestinal fluid. The assessment using propranolol reproduced results equivalent to those obtained from conventional methodology, while that using solifenacin indicated fluctuations in the permeability of solifenacin due to various factors, including interaction with bile acids. We therefore suggest that this model will serve as an alternative testing system for measuring drug absorption in an environment closely resembling that of the human gastrointestinal tract.


Assuntos
Ácidos e Sais Biliares , Trato Gastrointestinal , Células CACO-2 , Permeabilidade da Membrana Celular , Humanos , Absorção Intestinal , Permeabilidade
4.
Nat Protoc ; 16(4): 2023-2050, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674788

RESUMO

Advanced in vitro kidney models are of great importance to the study of renal physiology and disease. Kidney tubuloids can be established from primary cells derived from adult kidney tissue or urine. Tubuloids are three-dimensional multicellular structures that recapitulate tubular function and have been used to study infectious, malignant, metabolic, and genetic diseases. For tubuloids to more closely represent the in vivo kidney, they can be integrated into an organ-on-a-chip system that has a more physiological tubular architecture and allows flow and interaction with vasculature or epithelial and mesenchymal cells from other organs. Here, we describe a detailed protocol for establishing tubuloid cultures from tissue and urine (1-3 weeks), as well as for generating and characterizing tubuloid cell-derived three-dimensional tubular structures in a perfused microfluidic multi-chip platform (7 d). The combination of the two systems yields a powerful in vitro tool that better recapitulates the complexity of the kidney tubule with donor-specific properties.


Assuntos
Túbulos Renais/crescimento & desenvolvimento , Dispositivos Lab-On-A-Chip , Organoides/crescimento & desenvolvimento , Perfusão , Técnicas de Cultura de Tecidos/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Fracionamento Celular , Criança , Pré-Escolar , Impedância Elétrica , Feminino , Corantes Fluorescentes/química , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Microfluídica , Pessoa de Meia-Idade , Ratos , Adulto Jovem
5.
J Pharm Sci ; 110(4): 1601-1614, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545187

RESUMO

Proximal tubule epithelial cells (PTEC) are susceptible to drug-induced kidney injury (DIKI). Cell-based, two-dimensional (2D) in vitro PTEC models are often poor predictors of DIKI, probably due to the lack of physiological architecture and flow. Here, we assessed a high throughput, 3D microfluidic platform (Nephroscreen) for the detection of DIKI in pharmaceutical development. This system was established with four model nephrotoxic drugs (cisplatin, tenofovir, tobramycin and cyclosporin A) and tested with eight pharmaceutical compounds. Measured parameters included cell viability, release of lactate dehydrogenase (LDH) and N-acetyl-ß-d-glucosaminidase (NAG), barrier integrity, release of specific miRNAs, and gene expression of toxicity markers. Drug-transporter interactions for P-gp and MRP2/4 were also determined. The most predictive read outs for DIKI were a combination of cell viability, LDH and miRNA release. In conclusion, Nephroscreen detected DIKI in a robust manner, is compatible with automated pipetting, proved to be amenable to long-term experiments, and was easily transferred between laboratories. This proof-of-concept-study demonstrated the usability and reproducibility of Nephroscreen for the detection of DIKI and drug-transporter interactions. Nephroscreen it represents a valuable tool towards replacing animal testing and supporting the 3Rs (Reduce, Refine and Replace animal experimentation).


Assuntos
Túbulos Renais Proximais , Dispositivos Lab-On-A-Chip , Animais , Interações Medicamentosas , Humanos , Rim , Reprodutibilidade dos Testes
6.
SLAS Technol ; 25(6): 585-597, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32576063

RESUMO

Development of efficient drugs and therapies for the treatment of inflammatory conditions in the intestine is often hampered by the lack of reliable, robust, and high-throughput in vitro and in vivo models. Current models generally fail to recapitulate key aspects of the intestine, resulting in low translatability to the human situation. Here, an immunocompetent 3D perfused intestine-on-a-chip platform was developed and characterized for studying intestinal inflammation. Forty independent polarized 3D perfused epithelial tubular structures were grown from cells of mixed epithelial origin, including enterocytes (Caco-2) and goblet cells (HT29-MTX-E12). Immune cells THP-1 and MUTZ-3, which can be activated, were added to the system and assessed for cytokine release. Intestinal inflammation was mimicked through exposure to tumor necrosis factor-α (TNFα) and interleukin (IL)-1ß. The effects were quantified by measuring transepithelial electrical resistance (TEER) and proinflammatory cytokine secretion on the apical and basal sides. Cytokines induced an inflammatory state in the culture, as demonstrated by the impaired barrier function and increased IL-8 secretion. Exposure to the known anti-inflammatory drug TPCA-1 prevented the inflammatory state. The model provides biological modularity for key aspects of intestinal inflammation, making use of well-established cell lines. This allows robust assays that can be tailored in complexity to serve all preclinical stages in the drug discovery and development process.


Assuntos
Mucosa Intestinal , Dispositivos Lab-On-A-Chip , Células CACO-2 , Humanos , Intestinos
7.
Nat Biotechnol ; 37(3): 303-313, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833775

RESUMO

Adult stem cell-derived organoids are three-dimensional epithelial structures that recapitulate fundamental aspects of their organ of origin. We describe conditions for the long-term growth of primary kidney tubular epithelial organoids, or 'tubuloids'. The cultures are established from human and mouse kidney tissue and can be expanded for at least 20 passages (>6 months) while retaining a normal number of chromosomes. In addition, cultures can be established from human urine. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. We apply tubuloids to model infectious, malignant and hereditary kidney diseases in a personalized fashion. BK virus infection of tubuloids recapitulates in vivo phenomena. Tubuloids are established from Wilms tumors. Kidney tubuloids derived from the urine of a subject with cystic fibrosis allow ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function.


Assuntos
Rim/citologia , Néfrons/citologia , Organoides/citologia , Medicina de Precisão , Adulto , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Humanos , Rim/crescimento & desenvolvimento , Nefropatias , Camundongos , Néfrons/metabolismo , Organoides/metabolismo , Urina/citologia
8.
AAPS J ; 20(5): 90, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30109442

RESUMO

Proximal tubules in the kidney play a crucial role in reabsorbing and eliminating substrates from the body into the urine, leading to high local concentrations of xenobiotics. This makes the proximal tubule a major target for drug toxicity that needs to be evaluated during the drug development process. Here, we describe an advanced in vitro model consisting of fully polarized renal proximal tubular epithelial cells cultured in a microfluidic system. Up to 40 leak-tight tubules were cultured on this platform that provides access to the basolateral as well as the apical side of the epithelial cells. Exposure to the nephrotoxicant cisplatin caused a dose-dependent disruption of the epithelial barrier, a decrease in viability, an increase in effluent LDH activity, and changes in expression of tight-junction marker zona-occludence 1, actin, and DNA-damage marker H2A.X, as detected by immunostaining. Activity and inhibition of the efflux pumps P-glycoprotein (P-gp) and multidrug resistance protein (MRP) were demonstrated using fluorescence-based transporter assays. In addition, the transepithelial transport function from the basolateral to the apical side of the proximal tubule was studied. The apparent permeability of the fluorescent P-gp substrate rhodamine 123 was decreased by 35% by co-incubation with cyclosporin A. Furthermore, the activity of the glucose transporter SGLT2 was demonstrated using the fluorescent glucose analog 6-NBDG which was sensitive to inhibition by phlorizin. Our results demonstrate that we developed a functional 3D perfused proximal tubule model with advanced renal epithelial characteristics that can be used for drug screening studies.


Assuntos
Técnicas de Cultura de Células , Células Epiteliais/efeitos dos fármacos , Nefropatias/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Moduladores de Transporte de Membrana/toxicidade , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Perfusão , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Linhagem Celular , Polaridade Celular , Cisplatino/toxicidade , Ciclosporina/toxicidade , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Dispositivos Lab-On-A-Chip , Proteínas de Membrana Transportadoras/metabolismo , Técnicas Analíticas Microfluídicas , Florizina/toxicidade , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/toxicidade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
9.
Mol Pharm ; 13(3): 933-44, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26871298

RESUMO

Apical transport is key in renal function, and the activity of efflux transporters and receptor-mediated endocytosis is pivotal in this process. The conditionally immortalized proximal tubule epithelial cell line (ciPTEC) endogenously expresses these systems. Here, we used ciPTEC to investigate the activity of three major efflux transporters, viz., breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp), as well as protein uptake through receptor-mediated endocytosis, using a fluorescence-based setup for transport assays. To this end, cells were exposed to Hoechst33342, chloromethylfluorescein-diacetate (CMFDA), and calcein-AM in the presence or absence of model inhibitors for BCRP (KO143), P-gp (PSC833), or MRPs (MK571). Overexpression cell lines MDCKII-BCRP and MDCKII-P-gp were used as positive controls, and membrane vesicles overexpressing one transporter were used to determine substrate and inhibitor specificities. Receptor-mediated endocytosis was investigated by determining the intracellular accumulation of fluorescently labeled receptor-associated protein (RAP-GST). In ciPTEC, BCRP and P-gp showed similar expressions and activities, whereas MRP4 was more abundantly expressed. Hoechst33342, GS-MF, and calcein are retained in the presence of KO143, MK571, and PSC833, showing clearly redundancy between the transporters. Noteworthy is the fact that both KO143 and MK571 can block BCRP, P-gp, and MRPs, whereas PSC833 appears to be a potent inhibitor for BCRP and P-gp but not the MRPs. Furthermore, ciPTEC accumulates RAP-GST in intracellular vesicles in a dose- and time-dependent manner, which was reduced in megalin-deficient cells. In conclusion, fluorescent-probe-based assays are fast and reproducible in determining apical transport mechanisms, in vitro. We demonstrate that typical substrates and inhibitors are not specific for the designated transporters, reflecting the complex interactions that can take place in vivo. The set of tools we describe are also compatible with innovative kidney culture models and allows studying transport mechanisms that are central to drug absorption, disposition, and detoxification.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Túbulos Renais Proximais/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Células Cultivadas , Cães , Endocitose/fisiologia , Fluorescência , Humanos , Túbulos Renais Proximais/citologia , Células Madin Darby de Rim Canino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...