Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174460, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38971255

RESUMO

This study explores sustainable methods to mitigate nitrogen (N) loss in agriculture amid rising food demands and limited arable land. It examines sewage sludge (SS) as an alternative to synthetic N fertilizers. SS is rich in nitrogen (4.21 ± 0.42 %) and phosphorus (3.60 ± 0.72 %), making it suitable for nutrient recovery and soil enhancement. Unfavorable sludge management methods result in the loss of 950,000 tons of nitrogen, meeting almost 10 % of the EU's nitrogen fertilization demand. This research evaluates SS treatment methods, including chemical conversion, thermal treatment, and biological composting, focusing on nitrogen conservation efficiency. Results show nitrogen loss during hydrolysis is minimized at pH 4 to 8 but increases significantly as ammonia (NH3) at pH 9 to 11, ranging from 4.2 % to 9 %. Neutralizing the hydrolysate is crucial; using solid KOH resulted in 13.5 % nitrogen loss, 11 times more than using slightly alkaline ash (1.22 %). Adding ash during drying reduced nitrogen emissions by 30 % compared to traditional drying at 105 °C. Improving the C/N ratio with food residues reduced nitrogen losses by 46.3 % during composting. These findings highlight the importance of pH control in chemical processes and temperature regulation in thermal treatments. Adding residues from other processes, such as biomass combustion waste, enhances SS processing conditions. Understanding nitrogen retention mechanisms is crucial for the environmental sustainability of SS usage. Efficient nitrogen retention strategies improve the fertilization value of SS and reduce its environmental footprint by lowering greenhouse gas emissions, particularly ammonia. Reducing nitrogen loss during SS treatment significantly lowers ammonia emissions, a major contributor to greenhouse gas emissions. These results help determine optimal methods for managing and processing SS to minimize emissions and increase agricultural usability.


Assuntos
Fertilizantes , Nitrogênio , Esgotos , Fertilizantes/análise , Nitrogênio/análise , Agricultura/métodos , Eliminação de Resíduos Líquidos/métodos , Compostagem/métodos
2.
Sci Total Environ ; 923: 171343, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438048

RESUMO

The growing focus on sustainable agriculture and optimal resource utilization has spurred investigations into lignocellulosic biomass as a potential source for producing environmentally friendly fertilizers. This paper reviews recent advancements in the production and application of innovative fertilizers derived from lignocellulose. It highlights potential in enhancing agricultural productivity and reducing environmental impacts such as carbon footprint and water pollution. The paper outlines various methods for conversion, highlighting the unique advantages of chemical, enzymatic, and microbiological processes, for converting lignocellulosic biomass into nutrient-rich fertilizers. The study compares the efficacy of lignocellulosic fertilizers to traditional fertilizers in promoting crop growth, enhancing soil health, and reducing nutrient losses. The results demonstrate the potential of lignocellulosic biomass-derived fertilizers in promoting resource efficiency and sustainable agriculture. While this research significantly contributes to the existing body of knowledge, further studies on long-term impacts and scalability are recommended for the development of innovative and sustainable agricultural practices.


Assuntos
Agricultura , Fertilizantes , Lignina , Biomassa , Fertilizantes/análise , Agricultura/métodos , Solo
3.
J Environ Manage ; 321: 116002, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104889

RESUMO

The aim of the research work was to present a multilayer hydrogel capsule with controlled nutrient release properties as an innovative fertilizer designed for sustainable agriculture. Preparation of the capsules included the following steps: sorption of micronutrients (Cu, Mn, Zn) on eggshells (1) and their immobilization in sodium alginate, with the crosslinking agent being the NPK solution (2). The capsules were coated with an additional layer of a mixture of biopolymers (0.79% alginate, 0.24% carboxymethylcellulose and 8.07% starch)by means of dipping and spraying techniques. The biocomposites were characterized by limited (<10% within 100 h for the structures encapsulated by the dipping method) release of fertilizer ions (except for small K+ ions). The hydrogel fertilizer formulations were analyzed for physicochemical properties such as macro- and micronutrient content, surface morphology analysis, coating structure evaluation, mechanical properties, swelling and drying kinetics. High nutrient bioavailability was confirmed in vitro (extraction in water and neutral ammonium citrate). Germination and pot tests have revealed that the application of multicomponent hydrogel fertilizers increases the length of cucumber roots by 20%, compared to the commercial product.


Assuntos
Fertilizantes , Hidrogéis , Agricultura , Alginatos , Cápsulas , Fertilizantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...