Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000523

RESUMO

The dental implant surface plays a crucial role in osseointegration. The topography and physicochemical properties will affect the cellular functions. In this research, four distinct titanium surfaces have been studied: machined acting (MACH), acid etched (AE), grit blasting (GBLAST), and a combination of grit blasting and subsequent acid etching (GBLAST + AE). Human amniotic mesenchymal (hAMSCs) and epithelial stem cells (hAECs) isolated from the amniotic membrane have attractive stem-cell properties. They were cultured on titanium surfaces to analyze their impact on biological behavior. The surface roughness, microhardness, wettability, and surface energy were analyzed using interferometric microscopy, Vickers indentation, and drop-sessile techniques. The GBLAST and GBLAST + AE surfaces showed higher roughness, reduced hydrophilicity, and lower surface energy with significant differences. Increased microhardness values for GBLAST and GBLAST + AE implants were attributed to surface compression. Cell viability was higher for hAMSCs, particularly on GBLAST and GBLAST + AE surfaces. Alkaline phosphatase activity enhanced in hAMSCs cultured on GBLAST and GBLAST + AE surfaces, while hAECs showed no mineralization signals. Osteogenic gene expression was upregulated in hAMSCs on GBLAST surfaces. Moreover, α2 and ß1 integrin expression enhanced in hAMSCs, suggesting a surface-integrin interaction. Consequently, hAMSCs would tend toward osteoblastic differentiation on grit-blasted surfaces conducive to osseointegration, a phenomenon not observed in hAECs.


Assuntos
Âmnio , Implantes Dentários , Propriedades de Superfície , Titânio , Humanos , Titânio/química , Âmnio/citologia , Âmnio/metabolismo , Osteogênese , Diferenciação Celular , Células Cultivadas , Osseointegração , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Sobrevivência Celular , Fosfatase Alcalina/metabolismo
2.
Materials (Basel) ; 17(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38998431

RESUMO

One of the most important challenges in endodontics is to have files that have excellent flexibility, toughness, and high fatigue life. Superelastic NiTi alloys have been a breakthrough and the new R-phase NiTi alloys promise to further optimize the good properties of NiTi alloys. In this work, two austenitic phase endodontic files with superelastic properties (Protaper and F6) and two austenitic phase files with the R-phase (M-wire and Reciproc) have been studied. The transformation temperatures were studied by calorimetry. Molds reproducing root canals at different angles (30, 45, and 70°) were obtained with cooling and loads simulating those used in the clinic. Mechanical cycles of different files were realized to fracture. Transformation temperatures were determined at different number of cycles. The different files were heat treated at 300 and 500 °C as the aging process, and the transformation temperatures were also determined. Scanning and transmission electron microscopy was used to observe the fractography and precipitates of the files. The results show that files with the R-phase have higher fracture cycles than files with only the austenitic phase. The fracture cycles depend on the angle of insertion in the root canal, with the angle of 70° being the one with the lowest fracture cycles in all cases. The R-Phase transformation increases the energy absorbed by the NiTi to produce the austenitic to R-phase and to produce the martensitic transformation causing the increase in the fracture cycles. Mechanical cycling leads to significant increases in the transformation temperatures Ms and Af as well as Rs and Rf. No changes in the transformation temperatures were observed for aging at 300 °C, but the appearance of Ni4Ti3 precipitates was observed in the aging treatments to the Nickel-rich files that correspond to those with the R transition. These results should be considered by endodontists to optimize the type of files for clinical therapy.

3.
Materials (Basel) ; 17(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38930312

RESUMO

Implantoplasty is a technique increasingly used to remove the biofilm that causes peri-implantitis on dental implants. This technique of mechanization of the titanium surface makes it possible to eliminate bacterial colonies, but it can generate variations in the properties of the implant. These variations, especially those in fatigue resistance and electrochemical corrosion behavior, have not been studied much. In this work, fatigue tests were performed on 60 dental implants without implantoplasty, namely 30 in air and 30 in Hank's solution at 37 °C, and 60 with implatoplasty, namely 30 in air and 30 in Hank's solution at 37 °C, using triaxial tension-compression and torsion stresses simulating human chewing. Mechanical tests were performed with a Bionix servo-hydraulic testing machine and fracture surfaces were studied by scanning electron microcopyElectrochemical corrosion tests were performed on 20 dental implants to determine the corrosion potentials and corrosion intensity for control implants and implantoplasty implants. Studies of titanium ion release to the physiological medium were carried out for each type of dental implants by Inductively Coupled-Plasma Mass Spectrometry at different immersion times at 37 °C. The results show a loss of fatigue caused by the implantoplasty of 30%, observing that the nucleation points of the cracks are in the areas of high deformation in the areas of the implant neck where the mechanization produced in the treatment of the implantoplasty causes an exaltation of fatigue cracks. It has been observed that tests performed in Hank's solution reduce the fatigue life due to the incorporation of hydrogen in the titanium causing the formation of hydrides that embrittle the dental implant. Likewise, the implantoplasty causes a reduction of the corrosion resistance with some pitting on the machined surface. Ion release analyses are slightly higher in the implantoplasted samples but do not show statistically significant differences. It has been observed that the physiological environment reduces the fatigue life of the implants due to the penetration of hydrogen into the titanium forming titanium hydrides which embrittle the implant. These results should be taken into account by clinicians to determine the convenience of performing a treatment such as implantoplasty that reduces the mechanical behavior and increases the chemical degradation of the titanium dental implant.

4.
Prostate ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888199

RESUMO

OBJECTIVE: To analyse the adverse events (AEs) associated with apalutamide and the impact of a multidisciplinary team (MDT) protocol on its management at a tertiary care hospital in a real-world setting. METHODS: This was an observational, prospective, cohort study based on real-world evidence at the Hospital Clínic de Barcelona. Includes patients diagnosed with metastatic hormone-sensitive prostate cancer (mHSPC) or high-risk nonmetastatic castration-resistant prostate cancer (nmCRPC) and who started treatment with apalutamide between May 2019 and March 2023 in a real-world clinical setting. RESULTS: Of the 121 patients treated with apalutamide, 52.1% experienced an AE, 19.8% experienced temporarily interruption or a reduction in the dose of apalutamide, and 13.2% discontinued treatment due to AEs. Without MDT protocol (49 patients), 24.5% of patients had to temporarily interrupt or reduce the dose of apalutamide due to AEs, with a median time from the start of treatment of 10.1 months, and 24.5% discontinued apalutamide due to AEs, with a median time from the start of treatment of 3.1 months. Meanwhile, whit MDT protocol (72 patients), 16.7% of patients had to temporarily interrupt or reduce the dose of apalutamide due to AEs, with a median time from the start of treatment of 1.6 months, and 5.6% discontinued apalutamide due to AEs, with a median time from the start of treatment of 4 months. The risk reduction associated with treatment discontinuation was statistically significant (p-value = 0.003). CONCLUSIONS: This study highlights the importance of MDT management of AEs associated with apalutamide to reduce treatment discontinuation.

5.
Cancers (Basel) ; 16(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791878

RESUMO

There are several well-described molecular mechanisms that influence cell growth and are related to the development of cancer. Chemokines constitute a fundamental element that is not only involved in local growth but also affects angiogenesis, tumor spread, and metastatic disease. Among them, the C-X-C motif chemokine ligand 12 (CXCL12) and its specific receptor the chemokine C-X-C motif receptor 4 (CXCR4) have been widely studied. The overexpression in cell membranes of CXCR4 has been shown to be associated with the development of different kinds of histological malignancies, such as adenocarcinomas, epidermoid carcinomas, mesenchymal tumors, or neuroendocrine neoplasms (NENs). The molecular synapsis between CXCL12 and CXCR4 leads to the interaction of G proteins and the activation of different intracellular signaling pathways in both gastroenteropancreatic (GEP) and bronchopulmonary (BP) NENs, conferring greater capacity for locoregional aggressiveness, the epithelial-mesenchymal transition (EMT), and the appearance of metastases. Therefore, it has been hypothesized as to how to design tools that target this receptor. The aim of this review is to focus on current knowledge of the relationship between CXCR4 and NENs, with a special emphasis on diagnostic and therapeutic molecular targets.

6.
Materials (Basel) ; 17(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612139

RESUMO

Grit basting is the most common process applied to titanium dental implants to give them a roughness that favors bone colonization. There are numerous studies on the influence of roughness on osseointegration, but the influence of the compressive residual stress associated with this treatment on biological behavior has not been determined. For this purpose, four types of surfaces have been studied using 60 titanium discs: smooth, smooth with residual stress, rough without stress, and rough with residual stress. Roughness was studied by optic interferometry; wettability and surface energy (polar and dispersive components) by contact angle equipment using three solvents; and residual stresses by Bragg-Bentano X-ray diffraction. The adhesion and alkaline phosphatase (ALP) levels on the different surfaces were studied using Saos-2 osteoblastic cultures. The bacterial strains Streptococcus sanguinis and Lactobacillus salivarius were cultured on different surfaces, determining the adhesion. The results showed that residual stresses lead to increased hydrophilicity on the surfaces, as well as an increase in surface energy, especially on the polar component. From the culture results, higher adhesion and higher ALP levels were observed in the discs with residual stresses when compared between smooth and roughened discs. It was also found that roughness was the property that mostly influenced osteoblasts' response. Bacteria colonize rough surfaces better than smooth surfaces, but no changes are observed due to residual surface tension.

7.
Materials (Basel) ; 17(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38541514

RESUMO

Invisible orthodontic aligners are having a great impact on tooth movement in an aesthetic and effective way. Different techniques, models, and clinical aspects have been studied for their proper use. However, the aim of this research has been to determine the effect of the shaping process on mechanical properties and their bacterial behavior. For this study, 40 original polyurethane plates and 40 identical models, obtained by hot forming the original plates, were used. The static tensile mechanical properties were studied with a Zwick testing machine using testing speeds of 5 mm/min at a temperature of 37 °C. The original plate and the aligner have been studied with a creep test by subjecting the samples to a constant tension of 30 N, and determining the elongation using a long-distance, high-resolution microscope at different time periods between 1 and 720 h. Studies of water absorption has been realized with artificial saliva for 5 h. Bacterial cultures of Streptococcus oralis and Actinomyces viscosus strains were grown on the original plates and on new and used models, to determine the proliferation of each bacterium through metabolic activity, colony-forming units, and LIVE/DEAD assays. The mechanical results showed an increase in the strength of the inserts with respect to the models obtained from 3.44 to 3.95 MPa in the elastic limit and a lower deformation capacity. It has been proven that the transition zone in the creep curves lasts longer in the original plate, producing the rapid increase in deformation at a shorter time (400 h) in the aligner. Therefore, the shaping process reduces the time of dental correction exerted by the aligner. The results of the bacterial culture assays show an increase in the number of bacterial colonies when the aligners have been used and when the polyurethane is conformed due to the internal energy of the model, with respect to the original polyurethane. It has been observed that between the original plate and the aligner there are no statistically significant differences in water absorption and therefore the forming process does not affect water absorption. A slight increase in water absorption can be observed, but after five hours of exposure, the increase is very small.

8.
Rev Esp Geriatr Gerontol ; 59(4): 101488, 2024.
Artigo em Espanhol | MEDLINE | ID: mdl-38552373

RESUMO

Advance care planning is a deliberative process that aims to help patients define goals and preferences for future care and treatment at a times when they have limited decision-making capacity. This study aims to analyze models of advance care planning in elderly individuals living in nursing homes. We reviewed papers published in Cochrane, PubMed and Embase. A total of 26 studies were selected, including a total of 44,131 people over 65 years of age. We analyzed the types of intervention (interviews, videos, workshops, documentation, etc.) and their results derived from the application. We conclude that no study implements a standardized intervention model. These interventions include decision-making (transfers to hospital, resucitation orders) and the adequacy of therapeutic effort (antibiotherapy, nutrition, serotherapy, etc.). Other outcomes are implementation barriers (time and training).


Assuntos
Planejamento Antecipado de Cuidados , Casas de Saúde , Casas de Saúde/organização & administração , Humanos , Idoso , Instituição de Longa Permanência para Idosos/organização & administração
9.
Materials (Basel) ; 17(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38255602

RESUMO

STATEMENT OF PROBLEM: Implant-supported rehabilitations are an increasingly frequent practice to replace lost teeth. Before clinical application, all implant components should demonstrate suitable durability in laboratory studies, through fatigue tests. OBJECTIVE: The purpose of this in vitro study was to evaluate the integrity and wear of implant components using SEM, and to assess the axial displacement of the implant-abutment assembly by Micro-CT, in different implant connections, after three distinct mechanical requests. MATERIALS AND METHODS: Four KLOCKNER implants (external connection SK2 and KL; and internal connection VEGA and ESSENTIAL) were submitted to three different mechanical requests: single tightening, multiple tightening, and multiple tightening and cyclic loading (500 N × 100 cycles). A total of 16 samples were evaluated by SEM, by the X-ray Bragg-Brentano method to obtain residual stresses, and scratch tests were realized for each surface and Micro-CT (4 control samples; 4 single tightening; 4 multiple tightening; 4 multiple tightening and cyclic loading). All dental implants were fabricated with commercially pure titanium (grade 3 titanium). Surface topography and axial displacement of abutment into the implant, from each group, were evaluated by SEM and Micro-CT. RESULTS: In the manufacturing state, implants and abutments revealed minor structural changes and minimal damage from the machining process. The application of the tightening torque and loading was decisive in the appearance and increase in contact marks on the faces of the hexagon of the abutment and the implant. Vega has the maximum compressive residual stress and, as a consequence, higher scratch force. The abutment-implant distances in SK2 and KL samples did not show statistically significant differences, for any of the mechanical demands analyzed. In contrast, statistically significant differences were observed in abutment-implant distance in the internal connection implants Vega and Essential. CONCLUSIONS: The application of mechanical compression loads caused deformation and contact marks in all models tested. Only internal connection implants revealed an axial displacement of the abutment into the implant, but at a general level, a clear intrusion of the abutment into the implant could only be confirmed in the Essential model, which obtained its maximal axial displacement with cyclic loading.

10.
Dent Mater ; 40(1): 9-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858421

RESUMO

OBJECTIVES: To determine the influence of different surface roughness and residual stress of hybrid surface implants on their behavior and mechanical failure. METHODS: Three types of implants with different surface roughness were used as specimens: smooth, rough, and hybrid. A diffractometer was used to determine the residual stress of the implants according to their different surface treatment. These results were used as an independent variable in a finite element analysis that compared the three specimens to determine the von Mises stress transferred to the implants and supporting bone and the resulting microdeformations. Flexural strength and fatigue behavior tests were performed to compare the results of the three types of implants. RESULTS: Higher residual stress values were found for rough surfaces (p < 0.05, Student's t-test) compared to smooth surfaces, and both types of stress were different for the two types of hybrid implant surfaces. Finite element analysis found different von Mises stress and microdeformation results, both at the level of the implant and the bone, for the three types of implants under study. These results were correlated with the different flexural strength behaviors (lower resistance for hybrids and higher for rough surfaces, p < 0.05) and fatigue behavior (the rough implant had the longest fatigue life, while the hybrid implant exhibited the worst fatigue behavior). SIGNIFICANCE: The results show a trend toward a less favorable mechanical behavior of the hybrid implants related to the retention of different residual stresses caused by the surface treatment.


Assuntos
Implantes Dentários , Análise de Elementos Finitos , Estresse Mecânico , Análise do Estresse Dentário/métodos
11.
Plant Physiol ; 195(2): 1152-1160, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38124468

RESUMO

C-REPEAT BINDING FACTORS (CBFs) are highly conserved plant transcription factors that promote cold tolerance. In Arabidopsis (Arabidopsis thaliana), three CBFs (CBF1 to CBF3) play a critical role in cold acclimation, and the expression of their corresponding genes is rapidly and transiently induced during this adaptive response. Cold induction of CBFs has been extensively studied and shown to be tightly controlled, yet the molecular mechanisms that restrict the expression of each CBF after their induction during cold acclimation are poorly understood. Here, we present genetic and molecular evidence that the decline in the induction of CBF3 during cold acclimation is epigenetically regulated through the Polycomb Repressive Complex (PRC) 2. We show that this complex promotes the deposition of the repressive mark H3K27me3 at the coding region of CBF3, silencing its expression. Our results indicate that the cold-inducible long noncoding RNA SVALKA is essential for this regulation by recruiting PRC2 to CBF3. These findings unveil a SVALKA-PRC2 regulatory module that ensures the precise timing of CBF3 induction during cold acclimation and the correct development of this adaptive response.


Assuntos
Aclimatação , Proteínas de Arabidopsis , Arabidopsis , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Complexo Repressor Polycomb 2 , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aclimatação/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
13.
Nat Commun ; 14(1): 6962, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907508

RESUMO

Changing the perception of defects as imperfections in crystalline frameworks into correlated domains amenable to chemical control and targeted design might offer opportunities for the design of porous materials with superior performance or distinctive behavior in catalysis, separation, storage, or guest recognition. From a chemical standpoint, the establishment of synthetic protocols adapted to control the generation and growth of correlated disorder is crucial to consider defect engineering a practicable route towards adjusting framework function. By using UiO-66 as experimental platform, we systematically explored the framework chemical space of the corresponding defective materials. Periodic disorder arising from controlled generation and growth of missing cluster vacancies can be chemically controlled by the relative concentration of linker and modulator, which has been used to isolate a crystallographically pure "disordered" reo phase. Cs-corrected scanning transmission electron microscopy is used to proof the coexistence of correlated domains of missing linker and cluster vacancies, whose relative sizes are fixed by the linker concentration. The relative distribution of correlated disorder in the porosity and catalytic activity of the material reveals that, contrarily to the common belief, surpassing a certain defect concentration threshold can have a detrimental effect.

15.
J Am Chem Soc ; 145(39): 21397-21407, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733631

RESUMO

Titanium-organic frameworks offer distinctive opportunities in the realm of metal-organic frameworks (MOFs) due to the integration of intrinsic photoactivity or redox versatility in porous architectures with ultrahigh stability. Unfortunately, the high polarizing power of Ti4+ cations makes them prone to hydrolysis, thus preventing the systematic design of these types of frameworks. We illustrate the use of heterobimetallic cluster Ti2Ca2 as a persistent building unit compatible with the isoreticular design of titanium frameworks. The MUV-12(X) and MUV-12(Y) series can be all synthesized as single crystals by using linkers of varying functionalization and size for the formation of the nets with tailorable porosity and degree of interpenetration. Following the generalization of this approach, we also gain rational control over interpenetration in these nets by designing linkers with varying degrees of steric hindrance to eliminate stacking interactions and access the highest gravimetric surface area reported for titanium(IV) MOFs (3000 m2 g-1).

16.
Materials (Basel) ; 16(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37629895

RESUMO

The aim of the present study was to describe and determine changes in the superelastic properties of NiTi archwires after clinical use and sterilization. Ten archwires from five different manufacturers (GAC, 3M, ODS, GC, FOR) were cut into two segments and evaluated using a three-point bending test in accordance with ISO 14841:2006. The center of each segment was deflected to 3.1 mm and then unloaded to 0 N to obtain a load-deflection curve. Deflection at the end of the plateau and forces at 3, 2, 1 and 0.5 mm on the unloading curve were recorded. Plateau slopes were calculated at 2, 1 and 0.5 mm of deflection. Data obtained were statistically analyzed to determine differences (p < 0.001). Results showed that the degree of superelasticity and exerted forces differed significantly among brand groups. After three months of clinical use, FOR released a greater force for a longer activation period. GC, EURO and FOR archwires seemed to lose their mechanical properties. GC wires released more force than other brand wires after clinical use. Regarding superelasticity after sterilization, GAC, 3M and FOR wires recovered their properties, while EURO archwires lost more.

17.
Materials (Basel) ; 16(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444905

RESUMO

This in vitro study analyzed the influence of substrate roughness on biofilm adhesion and cellular viability over triethoxysilylpropyl succinic anhydride silane (TESPSA)- and citric acid (CA)-coated surfaces at 12 and 24 h, respectively. A multispecies biofilm composed of S. oralis, A. naslundii, V. parvula, F. nucleatum, P. intermedia, P. gingivalis, P. endodontalis and F. alocis was developed over titanium discs grouped depending on their roughness (low, medium, high) and antibacterial coating (low-TESPSA, medium-TESPSA, high-TESPSA, and CA). The biofilm was quantified by means of quantitative polymerase chain reaction (PCR) and viability PCR and assessed through confocal laser scanning microscope (CLSM). Quantitative PCR revealed no significant differences in bacterial adhesion and biofilm mortality. CA was the surface with the lowest bacterial counts and highest mortality at 12 and 24 h, respectively, while high harbored the highest amount of biofilm at 24 h. By CLSM, CA presented significant amounts of dead cells compared to medium-TESPSA and high-TESPSA. A significantly greater volume of dead cells was found at 12 h in low-TESPSA compared to medium-TESPSA, while CA also presented significant amounts of dead cells compared to medium-TESPSA and high-TESPSA. With regard to the live/dead ratio, low-TESPSA presented a significantly higher ratio at 12 h compared to medium-TESPSA and high-TESPSA. Similarly, CA exhibited a significantly higher live/dead ratio compared to medium-TESPSA and high-TESPSA at 12 h. This multispecies in vitro biofilm did not evidence clear antiadhesive and bactericidal differences between surfaces, although a tendency to reduce adhesion and increase antibacterial effect was observed in the low-TESPSA and CA.

18.
J Clin Med ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445228

RESUMO

In the placement of dental implants, the primary fixation between the dental implant and the bone is of great importance and corresponds to compressive mechanical fixation that aims to prevent micromovement of the implant. The aim of this research was to determine the role of roughness and the type of dental implant (tissue-level or bone-level) in implant stability, measured using resonance frequency analysis (RFA) and insertion torque (IT). We analyzed 234 titanium dental implants, placed in fresh calf ribs, at the half-tissue level and half-bone level. The implant surface was subjected to grit-blasting treatments with alumina particles of 120, 300, and 600 µm at a projection pressure of 2.5 bar, resulting in three types of roughness. Roughness was determined via optical interferometry. The wettability of the surfaces was also determined. Implant stability was measured using a high-precision torquemeter to obtain IT, and RFA was used to determine the implant stability quotient (ISQ). The results show that rough surfaces with Sa values of 0.5 to 4 µm do not affect the primary stability. However, the type of implant is important; bone-level implants obtained the highest primary stability values. A good correlation between the primary stability values obtained via IT and ISQ was demonstrated. New in vivo studies are necessary to know whether these results can be maintained in the long term.

19.
Chem Sci ; 14(25): 6826-6840, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37389254

RESUMO

Research on metal-organic frameworks is shifting from the principles that control the assembly, structure, and porosity of these reticular solids, already established, into more sophisticated concepts that embrace chemical complexity as a tool for encoding their function or accessing new properties by exploiting the combination of different components (organic and inorganic) into these networks. The possibility of combining multiple linkers into a given network for multivariate solids with tunable properties dictated by the nature and distribution of the organic connectors across the solid has been well demonstrated. However, the combination of different metals remains still comparatively underexplored due to the difficulties in controlling the nucleation of heterometallic metal-oxo clusters during the assembly of the framework or the post-synthetic incorporation of metals with distinct chemistry. This possibility is even more challenging for titanium-organic frameworks due to the additional difficulties intrinsic to controlling the chemistry of titanium in solution. In this perspective article we provide an overview of the synthesis and advanced characterization of mixed-metal frameworks and emphasize the particularities of those based in titanium with particular focus on the use of additional metals to modify their function by controlling their reactivity in the solid state, tailoring their electronic structure and photocatalytic activity, enabling synergistic catalysis, directing the grafting of small molecules or even unlocking the formation of mixed oxides with stoichiometries not accessible to conventional routes.

20.
J Am Chem Soc ; 145(26): 14276-14287, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339504

RESUMO

We report an innovative approach to producing bacteriochlorins (bacs) via formal cycloaddition by subjecting a porphyrin to a trimolecular reaction. Bacs are near-infrared probes with the intrinsic ability to serve in multimodal imaging. However, despite their ability to fluoresce and chelate metal ions, existing bacs have thus offered limited ability to label biomolecules for target specificity or have lacked chemical purity, limiting their use in bio-imaging. In this work, bacs allowed a precise and controlled appending of clickable linkers, lending the porphyrinoids substantially more chemical stability, clickability, and solubility, rendering them more suitable for preclinical investigation. Our bac probes enable the targeted use of biomolecules in fluorescence imaging and Cerenkov luminescence for guided intraoperative imaging. Bacs' capacity for chelation provides opportunities for use in non-invasive positron emission tomography/computed tomography. Herein, we report the labeling of bacs with Hs1a, a (NaV1.7)-sodium-channel-binding peptide derived from the Chinese tarantula Cyriopagopus schmidti to yield Bac-Hs1a and radiolabeled Hs1a, which shuttles our bac sensor(s) to mouse nerves. In vivo, the bac sensor allowed us to observe high signal-to-background ratios in the nerves of animals injected with fluorescent Bac-Hs1a and radiolabeled Hs1a in all imaging modes. This study demonstrates that Bac-Hs1a and [64Cu]Cu-Bac-Hs1a accumulate in peripheral nerves, providing contrast and utility in the preclinical space. For the chemistry and bio-imaging fields, this study represents an exciting starting point for the modular manipulation of bacs, their development and use as probes for diagnosis, and their deployment as formidable multiplex nerve-imaging agents for use in routine imaging experiments.


Assuntos
Porfirinas , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...