Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33087352

RESUMO

The chemical design of polymers with target structural and/or functional properties represents a grand challenge in materials science. While data-driven design approaches are promising, success with polymers has been limited, largely due to limitations in data availability. Here, we demonstrate the targeted sequence design of single-chain structure in polymers by combining coarse-grained modeling, machine learning, and model optimization. Nearly 2000 unique coarse-grained polymers are simulated to construct and analyze machine learning models. We find that deep neural networks inexpensively and reliably predict structural properties with limited sequence information as input. By coupling trained ML models with sequential model-based optimization, polymer sequences are proposed to exhibit globular, swollen, or rod-like behaviors, which are verified by explicit simulations. This work highlights the promising integration of coarse-grained modeling with data-driven design and represents a necessary and crucial step toward more complex polymer design efforts.

2.
Phys Chem Chem Phys ; 21(25): 13821-13825, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31211312

RESUMO

Triboelectric charging - which children see when they rub balloons on their hair - has important consequences in many industries and natural phenomena. Despite its importance, the identity of the charge carriers that lead to triboelectric charging is uncertain. For polymers, previous X-ray photoelectron spectroscopy studies definitively show that bonds break during triboelectric charging. Others have argued that a pair of co-located bond breaks release a charged fragment that acts as the charge carrier for triboelectric charging. We describe an alternative process based on density functional theory results showing that charged fragments, in the presence of water, will react to form neutral fragments and H+ or OH- ions. These results show that a single bond break, which is more likely than a pair of co-located bond breaks, can then create tethered polymer fragments that in humidity will generate mobile H+ or OH- charge carriers for triboelectric charging.

3.
Soft Matter ; 14(47): 9675-9680, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30460961

RESUMO

Single-stranded DNA (ssDNA) brushes, in which ssDNA oligomers are tethered to surfaces in dense monolayers, are being investigated for potential biosensing applications. The structure of the brush can affect the selectivity and the hybridization efficiency of the device. The structure is commonly thought to result from the balance of intramolecular interactions, intermolecular interactions within the monolayer, and molecule-surface interactions. Here, we test the hypothesis that ssDNA oligomer brush structure is dominated by intramolecular interactions. We use AFM to measure the height of an ssDNA brush and molecular dynamics to simulate the end-to-end distance, both as a function of ionic strength of the surrounding solution. The brush height and the molecule end-to-end distance match quantitatively, providing evidence that the brush structure is dominated by intramolecular interactions (mediated by ions). The physical basis of the intramolecular interactions is elucidated by the simulations.


Assuntos
DNA de Cadeia Simples/química , Íons/química , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Concentração Osmolar
4.
J Phys Chem A ; 121(33): 6269-6282, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28747051

RESUMO

Polymerization of benzoxazine resins is indicated by the disappearance of a 960-900 cm-1 band in infrared spectroscopy (IR). Historically, this band was assigned to the C-H out-of-plane bending of the benzene to which the oxazine ring is attached. This study shows that this band is a mixture of the O-C2 stretching of the oxazine ring and the phenolic ring vibrational modes. Vibrational frequencies of 3-phenyl-3,4-dihydro-2H-benzo[e][1,3]oxazine (PH-a) and 3-(tert-butyl)-3,4-dihydro-2H-benzo[e][1,3]oxazine (PH-t) are compared with isotope-exchanged and all-substituted compounds. Deuterated benzoxazine monomers, 15N-isotope exchanged benzoxazine monomers, and all-substituted benzoxazine monomers without aromatic C-H groups are synthesized and studied meticulously. The various isotopic-exchanges involved deuteration around the benzene ring of phenol, selective deuteration of each CH2 in the O-CH2-N (2) and N-CH2-Ar (4) positions on the oxazine ring, or simultaneous deuteration of both positions. The chemical structures were confirmed by 1H nuclear magnetic resonance spectroscopy (1H NMR). The IR and Raman spectra of each compound are compared. Further analysis of 15N isotope-exchanged PH-a indicates the influence of the nitrogen isotope on the band position, both experimentally and theoretically. This finding is important for polymerization studies of benzoxazines that utilize vibrational spectroscopy.

5.
J Chem Phys ; 145(20): 204705, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27908141

RESUMO

Here we study the relationship between a surfactant's molecular shape and its tendency to partition to the interface in ethanol-water mixtures. In general, finding surfactants that are effective in alcohol-water mixtures is more challenging than finding ones that are effective in pure water. This is because the solvophobic effect that partitions surfactants from bulk solution to the interface becomes weaker as ethanol concentration increases. We use experiments and molecular dynamics to observe the effects of increasing surfactant tail length or width. The results show that increasing surfactant tail length causes the surfactant to partition to the surface better in low ethanol concentrations, but not at high ethanol concentrations. In comparison, increasing surfactant tail width causes the surfactant to partition to the surface better at higher concentrations of ethanol. We examine the liquid structure to elucidate the mechanisms that weaken the partitioning effect as ethanol concentration increases. Ethanol-water mixtures are nanoscopically heterogeneous with protic and aprotic regions in the bulk solution. We see that the surfactant tail is most likely to be solvated in the aprotic regions where it perturbs fewer hydrogen bonds.

6.
J Chem Phys ; 142(8): 084702, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25725746

RESUMO

The surface activity of a typical surfactant, octanoic acid (OA), in ethanol-water solutions is investigated with a combined experimental and molecular simulation approach. The experiments show that OA reduces the surface tension of ethanol-water solutions at low ethanol concentration, but the effectiveness decreases with increasing ethanol concentration and vanishes for ethanol concentrations above 60%. Molecular dynamics simulations are used to obtain free energy landscapes for OA as a function of the distance from the surface. The free energy driving force pushing OA to the surface decreases with increasing ethanol concentration, and becomes insignificant (i.e., less than kT) for ethanol concentrations above 70%. Thus, the decrease in the effectiveness of OA in reducing the surface tension at higher ethanol concentrations can be attributed to the decrease in the free energy driving force keeping OA at the surface. We expect these results to apply generally to hydrocarbon-based surfactants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...