Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 34(8): 1064-72, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24632607

RESUMO

Glioblastomas (GBM) are highly radioresistant and lethal brain tumors. Ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) are a risk factor for the development of GBM. In this study, we systematically examined the contribution of IR-induced DSBs to GBM development using transgenic mouse models harboring brain-targeted deletions of key tumor suppressors frequently lost in GBM, namely Ink4a, Ink4b, Arf and/or PTEN. Using low linear energy transfer (LET) X-rays to generate simple breaks or high LET HZE particles (Fe ions) to generate complex breaks, we found that DSBs induce high-grade gliomas in these mice which, otherwise, do not develop gliomas spontaneously. Loss of Ink4a and Arf was sufficient to trigger IR-induced glioma development but additional loss of Ink4b significantly increased tumor incidence. We analyzed IR-induced tumors for copy number alterations to identify oncogenic changes that were generated and selected for as a consequence of stochastic DSB events. We found Met amplification to be the most significant oncogenic event in these radiation-induced gliomas. Importantly, Met activation resulted in the expression of Sox2, a GBM cancer stem cell marker, and was obligatory for tumor formation. In sum, these results indicate that radiation-induced DSBs cooperate with loss of Ink4 and Arf tumor suppressors to generate high-grade gliomas that are commonly driven by Met amplification and activation.


Assuntos
Neoplasias Encefálicas/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Quebras de DNA de Cadeia Dupla , Glioblastoma/genética , Proteínas Proto-Oncogênicas c-met/genética , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Amplificação de Genes , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Radiação Ionizante
2.
Cancer Gene Ther ; 19(7): 451-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22555510

RESUMO

Adenoviral technology has been thoroughly evaluated for delivering genetic material to tumor tissue and the surrounding microenvironment. Almost any gene can be cloned into an adenovirus (Ad) vector, which when combined with strong, constitutively active promoters permit up to a million-fold amplification of the transgene in a single adenoviral particle, thus facilitating their use in cancer therapy and imaging. However, widespread infection of the liver and other non-targeted tissues by Ad vectors is a substantial problem that often results in significant liver inflammation and hepatotoxicity at doses required to achieve efficient tumor transduction. miR-122 is a highly expressed liver-specific microRNA (miRNA) that provides a unique opportunity for downregulating adenoviral transgene expression in liver tissue. The binding of endogenous miRNAs to complementary miRNA-targeting elements (miRTs) incorporated into the 3' untranslated region of adenoviral transgenes interferes with message stability and/or protein translation, and miRT elements against miR-122 (miRT-122) can selectively reduce adenoviral transgene expression in the liver. Previous studies using miR-122-based regulation, with and without other types of transcriptional targeting, have yielded promising preliminary results. However, investigations to date evaluating miRT-122 elements for improving tumor specificity have used either non-tumor-bearing animals or direct intratumoral injection as the mode of delivery. In the present study, we confirmed the ability of miRT-122 sequences to selectively downregulate adenoviral luciferase expression in the liver in vitro and in vivo, and show that this strategy can improve tumor-specific transgene expression in a HT1080 human fibrosarcoma model. Rapid growth and the inefficient flow of blood through tumor neovasculature often results in profound hypoxia, which provides additional opportunities for targeting solid tumors and their microenvironment using vectors incorporating hypoxia-responsive promoters to drive transgene expression. We therefore used a combinatorial approach using miRT-122 elements with hypoxia-responsive transcriptional targeting to further improve the tumor-specific expression of an adenoviral reporter gene. Results from this investigation reveal that miRT122 elements alone decrease off-target liver expression and improve tumor specificity of adenoviral vectors. Furthermore, increased tumor specificity can be achieved by combining miRT-122 elements with hypoxia-responsive promoters.


Assuntos
Adenoviridae/genética , Fibrossarcoma/terapia , Inativação Gênica , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Hipóxia Celular , Fibrossarcoma/genética , Fibrossarcoma/metabolismo , Terapia Genética/métodos , Vetores Genéticos , Humanos , Fígado/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Transplante de Neoplasias , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transgenes , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...