Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Cent Sci ; 7(8): 1300-1310, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34471675

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS, progeria) is a rare genetic disease characterized by premature aging and death in childhood for which there were no approved drugs for its treatment until last November, when lonafarnib obtained long-sought FDA approval. However, the benefits of lonafarnib in patients are limited, highlighting the need for new therapeutic strategies. Here, we validate the enzyme isoprenylcysteine carboxylmethyltransferase (ICMT) as a new therapeutic target for progeria with the development of a new series of potent inhibitors of this enzyme that exhibit an excellent antiprogeroid profile. Among them, compound UCM-13207 significantly improved the main hallmarks of progeria. Specifically, treatment of fibroblasts from progeroid mice with UCM-13207 delocalized progerin from the nuclear membrane, diminished its total protein levels, resulting in decreased DNA damage, and increased cellular viability. Importantly, these effects were also observed in patient-derived cells. Using the Lmna G609G/G609G progeroid mouse model, UCM-13207 showed an excellent in vivo efficacy by increasing body weight, enhancing grip strength, extending lifespan by 20%, and decreasing tissue senescence in multiple organs. Furthermore, UCM-13207 treatment led to an improvement of key cardiovascular hallmarks such as reduced progerin levels in aortic and endocardial tissue and increased number of vascular smooth muscle cells (VSMCs). The beneficial effects go well beyond the effects induced by other therapeutic strategies previously reported in the field, thus supporting the use of UCM-13207 as a new treatment for progeria.

2.
J Med Chem ; 62(13): 6035-6046, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31181882

RESUMO

Blockade of Ras activity by inhibiting its post-translational methylation catalyzed by isoprenylcysteine carboxylmethyltransferase (ICMT) has been suggested as a promising antitumor strategy. However, the paucity of inhibitors has precluded the clinical validation of this approach. In this work we report a potent ICMT inhibitor, compound 3 [UCM-1336, IC50 = 2 µM], which is selective against the other enzymes involved in the post-translational modifications of Ras. Compound 3 significantly impairs the membrane association of the four Ras isoforms, leading to a decrease of Ras activity and to inhibition of Ras downstream signaling pathways. In addition, it induces cell death in a variety of Ras-mutated tumor cell lines and increases survival in an in vivo model of acute myeloid leukemia. Because ICMT inhibition impairs the activity of the four Ras isoforms regardless of its activating mutation, compound 3 surmounts many of the common limitations of available Ras inhibitors described so far. In addition, these results validate ICMT as a valuable target for the treatment of Ras-driven tumors.


Assuntos
Alanina/uso terapêutico , Amidas/uso terapêutico , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Metiltransferases/antagonistas & inibidores , Alanina/análogos & derivados , Alanina/síntese química , Alanina/farmacologia , Amidas/síntese química , Amidas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biochem Pharmacol ; 157: 18-32, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30059673

RESUMO

Monoacylglycerol lipase (MAGL) has been characterized as the main enzyme responsible for the inactivation of the most abundant brain endocannabinoid, 2-arachidonoylglycerol (2-AG). Besides this role, MAGL has progressively acquired a growing importance as an integrative metabolic hub that controls not only the in vivo levels of 2-AG but also of other monoacylglycerides and, indirectly, the levels of free fatty acids derived from their hydrolysis as well as other lipids with pro-inflammatory or pro-tumorigenic effects, coming from the further metabolism of fatty acids. All these functions have only started to be elucidated in the last years due to the progress made in the knowledge of the structure of MAGL and in the development of genetic and chemical tools. In this review we report the advances made in the field with a special focus on the last decade and how MAGL has become a promising therapeutic target for the treatment of several diseases that currently lack appropriate therapies.


Assuntos
Monoacilglicerol Lipases/antagonistas & inibidores , Animais , Biocatálise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Camundongos , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...