Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 165(9): 990-1000, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184576

RESUMO

Rhizobium tropici strain CIAT 899 possesses outstanding agronomic properties as it displays tolerance to environmental stresses, a broad host range and high effectiveness in fixing nitrogen with the common bean (Phaseolus vulgaris L.); in addition, it carries intriguing features such as five copies of the regulatory nodD gene, and the capacity to synthesize a variety of nodulation factors (NFs), even in a flavonoid-independent manner, when submitted to abiotic stresses. However, the roles of several nod genes of the repertoire of CIAT 899 remain to be determined. In this study, we obtained mutants for the hsnT, nodF and nodE genes of CIAT 899 and investigated their expression, NF structures and symbiotic properties. Either in the presence of the flavonoid apigenin, or of salt the expression of hsnT, nodF and nodE in wild-type CIAT 899 was highly up-regulated in comparison to the mutants of all five copies of nodD, indicating the roles that regulatory nodD genes play in the activation of hsnT, nodF and nodE; however, NodD1 was recognized as the main inducer. In total, 29 different NF structures were synthesized by wild-type CIAT 899 induced by apigenin, and 36 when induced by salt, being drastically reduced by mutations in hsnT, nodF and nodE, especially under osmotic stress, with specific changes related to each gene, indicating that the three genes participate in the synthesis of NFs. Mutations in hsnT, nodF and nodE affected differently symbiotic performance (nodule number and shoot dry weight), according to the host plant. Our results indicate that the expression of hsnT, nodF and nodE genes of CIAT 899 is mediated by nodD genes, and although these three genes do not belong to the main set of genes controlling nodulation, they contribute to the synthesis of NFs that will impact symbiotic performance and host specificity.


Assuntos
Proteínas de Bactérias/genética , Nodulação/genética , Rhizobium tropici/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Fixação de Nitrogênio/fisiologia , Phaseolus/microbiologia , Simbiose/genética
2.
Environ Microbiol ; 21(5): 1718-1739, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30839140

RESUMO

Sinorhizobium fredii HH103 RifR , a broad-host-range rhizobial strain, forms ineffective nodules with Lotus japonicus but induces nitrogen-fixing nodules in Lotus burttii roots that are infected by intercellular entry. Here we show that HH103 RifR nolR or nodD2 mutants gain the ability to induce infection thread formation and to form nitrogen-fixing nodules in L. japonicus Gifu. Microscopy studies showed that the mode of infection of L. burttii roots by the nodD2 and nolR mutants switched from intercellular entry to infection threads (ITs). In the presence of the isoflavone genistein, both mutants overproduced Nod-factors. Transcriptomic analyses showed that, in the presence of Lotus japonicus Gifu root exudates, genes related to Nod factors production were overexpressed in both mutants in comparison to HH103 RifR . Complementation of the nodD2 and nolR mutants provoked a decrease in Nod-factor production, the incapacity to form nitrogen-fixing nodules with L. japonicus Gifu and restored the intercellular way of infection in L. burttii. Thus, the capacity of S. fredii HH103 RifR nodD2 and nolR mutants to infect L. burttii and L. japonicus Gifu by ITs and fix nitrogen L. japonicus Gifu might be correlated with Nod-factor overproduction, although other bacterial symbiotic signals could also be involved.


Assuntos
Lotus/microbiologia , Doenças das Plantas/microbiologia , Sinorhizobium fredii/fisiologia , Especificidade de Hospedeiro , Mutação , Raízes de Plantas/microbiologia , Sinorhizobium fredii/genética , Sinorhizobium fredii/isolamento & purificação
3.
PLoS One ; 14(3): e0213298, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917160

RESUMO

The symbiosis between rhizobia and legumes is characterized by a complex molecular dialogue in which the bacterial NodD protein plays a major role due to its capacity to activate the expression of the nodulation genes in the presence of appropiate flavonoids. These genes are involved in the synthesis of molecules, the nodulation factors (NF), responsible for launching the nodulation process. Rhizobium tropici CIAT 899, a rhizobial strain that nodulates Phaseolus vulgaris, is characterized by its tolerance to multiple environmental stresses such as high temperatures, acidity or elevated osmolarity. This strain produces nodulation factors under saline stress and the same set of CIAT 899 nodulation genes activated by inducing flavonoids are also up-regulated in a process controlled by the NodD2 protein. In this paper, we have studied the effect of osmotic stress (high mannitol concentrations) on the R. tropici CIAT 899 transcriptomic response. In the same manner as with saline stress, the osmotic stress mediated NF production and export was controlled directly by NodD2. In contrast to previous reports, the nodA2FE operon and the nodA3 and nodD1 genes were up-regulated with mannitol, which correlated with an increase in the production of biologically active NF. Interestingly, in these conditions, this regulatory protein controlled not only the expression of nodulation genes but also the expression of other genes involved in protein folding and synthesis, motility, synthesis of polysaccharides and, surprinsingly, nitrogen fixation. Moreover, the non-metabolizable sugar dulcitol was also able to induce the NF production and the activation of nod genes in CIAT 899.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Pressão Osmótica , Rhizobium tropici/genética , Proteínas de Bactérias/genética , Diuréticos Osmóticos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Manitol/farmacologia , Rhizobium tropici/efeitos dos fármacos , Rhizobium tropici/crescimento & desenvolvimento , Rhizobium tropici/metabolismo , Ativação Transcricional
4.
Front Plant Sci ; 9: 1508, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405659

RESUMO

Seed germination and early seedling development have been studied in the recalcitrant species Quercus ilex using targeted transcriptional, hormonal, and sugar analysis. Embryos and seedlings were collected at eight morphologically defined developmental stages, S0-S7. A typical triphasic water uptake curve was observed throughout development, accompanied by a decrease in sucrose and an increase in glucose and fructose. Low levels of abscisic acid (ABA) and high levels of gibberellins (GAs) were observed in mature seeds. Post-germination, indole-3-acetic acid (IAA), increased, whereas GA remained high, a pattern commonly observed during growth and development. The abundance of transcripts from ABA-related genes was positively correlated with the changes in the content of the phytohormone. Transcripts of the drought-related genes Dhn3 and GolS were more abundant at S0, then decreased in parallel with increasing water content. Transcripts for Gapdh, and Nadh6 were abundant at S0, supporting the occurrence of an active metabolism in recalcitrant seeds at the time of shedding. The importance of ROS during germination is manifest in the high transcript levels for Sod and Gst, found in mature seeds. The results presented herein help distinguish recalcitrant (e.g., Q. ilex) seeds from their orthodox counterparts. Our results indicate that recalcitrance is established during seed development but not manifest until germination (S1-S3). Post-germination the patterns are quite similar for both orthodox and recalcitrant seeds.

5.
Carbohydr Res ; 462: 1-6, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29604473

RESUMO

Aeromonas sp. AMG272 is a Gram-negative bacterium that has been isolated from agricultural soil and studied for its plant growth-promoting activities. Structures of the O-specific polysaccharide chain of the AMG272 lipopolysaccharide and its capsular polysaccharide were elucidated using GLC-MS and NMR spectroscopy. The structure of the O-specific polysaccharide, →4)-α-l-Rhap-(1 → 3)-ß-d-GlcpNAc-(1→, has been found in other Aeromonas strains and related bacteria, whereas the structure of the capsular polysaccharide has not been reported before: →6)[ß-d-Fucp3NAc4Ac-(1 → 3)]-α-d-GlcpNAc-(1 → 4)-α-d-Galp-(1 → 3)-α-d-GalpNAc-(1 → 4)-α-d-Galp-(1 → .


Assuntos
Aeromonas/citologia , Lipopolissacarídeos/química , Antígenos O/química , Oryza/microbiologia , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Rizosfera
6.
Sci Rep ; 7: 46712, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28488698

RESUMO

In the symbiotic associations between rhizobia and legumes, NodD promotes the expression of the nodulation genes in the presence of appropriate flavonoids. This set of genes is implied in the synthesis of Nodulation factors, which are responsible for launching the nodulation process. Rhizobium tropici CIAT 899 is the most successful symbiont of Phaseolus vulgaris and can nodulate a variety of legumes. This strain produces Nodulation factors under abiotic stress such as acidity or high concentration of salt. Genome sequencing of CIAT 899 allowed the identification of five nodD genes. Whereas NodD1 is essential to nodulate Leucaena leucocephala, Lotus japonicus and Macroptilium atropurpureum, symbiosis with P. vulgaris and Lotus burtii decreased the nodule number but did not abolish the symbiotic process when NodD1 is absent. Nodulation factor synthesis under salt stress is not regulated by NodD1. Here we confirmed that NodD2 is responsible for the activation of the CIAT 899 symbiotic genes under salt stress. We have demonstrated that NodD1 and NodD2 control the synthesis of the Nod factor necessary for a successful symbiosis with P. vulgaris and L. burtii. This is the first time that NodD is directly implied in the activation of the symbiotic genes under an abiotic stress.


Assuntos
Glucosamina/análogos & derivados , Oligossacarídeos/metabolismo , Proteínas de Plantas/metabolismo , Rhizobium tropici/metabolismo , Quitina/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Fabaceae/microbiologia , Flavonoides/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucosamina/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Phaseolus/microbiologia , Proteínas de Plantas/genética , Nodulação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rhizobium tropici/genética , Rhizobium tropici/fisiologia , Estresse Salino , Sulfatos/metabolismo , Simbiose/genética
7.
Mol Plant Microbe Interact ; 29(12): 925-937, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27827003

RESUMO

Sinorhizobium fredii HH103-Rifr, a broad host range rhizobial strain, induces nitrogen-fixing nodules in Lotus burttii but ineffective nodules in L. japonicus. Confocal microscopy studies showed that Mesorhizobium loti MAFF303099 and S. fredii HH103-Rifr invade L. burttii roots through infection threads or epidermal cracks, respectively. Infection threads in root hairs were not observed in L. burttii plants inoculated with S. fredii HH103-Rifr. A S. fredii HH103-Rifr nodA mutant failed to nodulate L. burttii, demonstrating that Nod factors are strictly necessary for this crack-entry mode, and a noeL mutant was also severely impaired in L. burttii nodulation, indicating that the presence of fucosyl residues in the Nod factor is symbiotically relevant. However, significant symbiotic impacts due to the absence of methylation or to acetylation of the fucosyl residue were not detected. In contrast S. fredii HH103-Rifr mutants showing lipopolysaccharide alterations had reduced symbiotic capacity, while mutants affected in production of either exopolysaccharides, capsular polysaccharides, or both were not impaired in nodulation. Mutants unable to produce cyclic glucans and purine or pyrimidine auxotrophic mutants formed ineffective nodules with L. burttii. Flagellin-dependent bacterial mobility was not required for crack infection, since HH103-Rifr fla mutants nodulated L. burttii. None of the S. fredii HH103-Rifr surface-polysaccharide mutants gained effective nodulation with L. japonicus.


Assuntos
Lotus/microbiologia , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium fredii/fisiologia , Simbiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Especificidade de Hospedeiro , Lotus/citologia , Lotus/fisiologia , Mutação , Fenótipo , Nodulação , Raízes de Plantas/citologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Polissacarídeos Bacterianos/química , Purinas/metabolismo , Pirimidinas/metabolismo , Sinorhizobium fredii/citologia , Sinorhizobium fredii/genética
8.
PLoS One ; 11(4): e0154029, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27096734

RESUMO

The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species.


Assuntos
Phaseolus/microbiologia , Raízes de Plantas/microbiologia , Rhizobium tropici/genética , Rhizobium tropici/fisiologia , Simbiose , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Genes Bacterianos , Mutação , Fixação de Nitrogênio , Phaseolus/fisiologia , Raízes de Plantas/fisiologia , Plasmídeos/genética , Ativação Transcricional
9.
BMC Genomics ; 16: 251, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25880529

RESUMO

BACKGROUND: Nodulation and symbiotic nitrogen fixation are mediated by several genes, both of the host legume and of the bacterium. The rhizobial regulatory nodD gene plays a critical role, orchestrating the transcription of the other nodulation genes. Rhizobium tropici strain CIAT 899 is an effective symbiont of several legumes-with an emphasis on common bean (Phaseolus vulgaris)-and is unusual in carrying multiple copies of nodD, the roles of which remain to be elucidated. RESULTS: Phenotypes, Nod factors and gene expression of nodD1 and nodD2 mutants of CIAT 899 were compared with those of the wild type strain, both in the presence and in the absence of the nod-gene-inducing molecules apigenin and salt (NaCl). Differences between the wild type and mutants were observed in swimming motility and IAA (indole acetic acid) synthesis. In the presence of both apigenin and salt, large numbers of Nod factors were detected in CIAT 899, with fewer detected in the mutants. nodC expression was lower in both mutants; differences in nodD1 and nodD2 expression were observed between the wild type and the mutants, with variation according to the inducing molecule, and with a major role of apigenin with nodD1 and of salt with nodD2. In the nodD1 mutant, nodulation was markedly reduced in common bean and abolished in leucaena (Leucaena leucocephala) and siratro (Macroptilium atropurpureum), whereas a mutation in nodD2 reduced nodulation in common bean, but not in the other two legumes. CONCLUSION: Our proposed model considers that full nodulation of common bean by R. tropici requires both nodD1 and nodD2, whereas, in other legume species that might represent the original host, nodD1 plays the major role. In general, nodD2 is an activator of nod-gene transcription, but, in specific conditions, it can slightly repress nodD1. nodD1 and nodD2 play other roles beyond nodulation, such as swimming motility and IAA synthesis.


Assuntos
Proteínas de Bactérias/genética , Fabaceae/microbiologia , Genes Bacterianos , Rhizobium tropici/genética , Apigenina/farmacologia , Proteínas de Bactérias/metabolismo , Fabaceae/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Mutação , Fixação de Nitrogênio/efeitos dos fármacos , Fenótipo , Nodulação/efeitos dos fármacos , Raízes de Plantas/microbiologia , Rhizobium tropici/fisiologia , Cloreto de Sódio/farmacologia , Simbiose/genética
10.
PLoS One ; 9(12): e115391, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25521500

RESUMO

Here we report that the structure of the Sinorhizobium fredii HH103 exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid, pyruvic acid, in the ratios 5∶2∶2∶1 and is partially acetylated. A S. fredii HH103 exoA mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules with soybean but also shows increased competitive capacity for nodule occupancy. Mutant SVQ530 is, however, less competitive to nodulate Vigna unguiculata. Biofilm formation was reduced in mutant SVQ530 but increased in an EPS overproducing mutant. Mutant SVQ530 was impaired in surface motility and showed higher osmosensitivity compared to its wild type strain in media containing 50 mM NaCl or 5% (w/v) sucrose. Neither S. fredii HH103 nor 41 other S. fredii strains were recognized by soybean lectin (SBL). S. fredii HH103 mutants affected in exopolysaccharides (EPS), lipopolysaccharides (LPS), cyclic glucans (CG) or capsular polysaccharides (KPS) were not significantly impaired in their soybean-root attachment capacity, suggesting that these surface polysaccharides might not be relevant in early attachment to soybean roots. These results also indicate that the molecular mechanisms involved in S. fredii attachment to soybean roots might be different to those operating in Bradyrhizobium japonicum.


Assuntos
Fixação de Nitrogênio , Polissacarídeos Bacterianos/química , Sinorhizobium fredii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Fabaceae/microbiologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Dados de Sequência Molecular , Mutação , Pressão Osmótica , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium fredii/genética , Sinorhizobium fredii/fisiologia , Simbiose
11.
Carbohydr Res ; 369: 25-30, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23376680

RESUMO

The lipopolysaccharide of a Gram-negative bacterium having a putative plant-growth promoting activity (Pantoea ananatis AEP17) has been isolated and subjected to partial hydrolysis. The O-antigen has been studied by mass spectrometry and NMR experiments. On the basis of these experiments it is concluded that the following repeating unit is present in the polysaccharide: →3)-ß-d-GlcpNAc-(1→3)[α-d-GalpAN-(1→2)]-α-l-Rhap-(1→2)-α-l-Rhap-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→ The occurrence of d-galacturonamide (GalAN) is unusual in bacterial O-polysaccharides. It has only been reported in Escherichia coli O65 [Perry, M. B.; MacLean, L. L. Carbohydr. Res.1999, 322, 57-66].


Assuntos
Lipopolissacarídeos/química , Antígenos O/química , Oryza/microbiologia , Pantoea/química , Sequência de Carboidratos , Rhizobiaceae/química
12.
Mol Plant Microbe Interact ; 25(6): 825-38, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22397406

RESUMO

The Sinorhizobium fredii HH103 rkp-3 region has been isolated and sequenced. Based on the similarities between the S. fredii HH103 rkpL, rkpM, rkpN, rkpO, rkpP, and rkpQ genes and their corresponding orthologues in Helicobacter pylori, we propose a possible pathway for the biosynthesis of the S. fredii HH103 K-antigen polysaccharide (KPS) repeating unit. Three rkp-3 genes (rkpM, rkpP, and rkpQ) involved in the biosynthesis of the HH103 KPS repeating unit (a derivative of the pseudaminic acid) have been mutated and analyzed. All the rkp-3 mutants failed to produce KPS and their lipopolysaccharide (LPS) profiles were altered. These mutants showed reduced motility and auto-agglutinated when early-stationary cultures were further incubated under static conditions. Glycine max, Vigna unguiculata (determinate nodule-forming legumes), and Cajanus cajan (indeterminate nodules) plants inoculated with mutants in rkpM, rkpQ, or rkpP only formed pseudonodules that did not fix nitrogen and were devoid of bacteria. In contrast, another indeterminate nodule-forming legume, Glycyrrhiza uralensis, was still able to form some nitrogen-fixing nodules with the three S. fredii HH103 rifampicin-resistant rkp-3 mutants tested. Our results suggest that the severe symbiotic impairment of the S. fredii rkp-3 mutants with soybean, V. unguiculata, and C. cajan is mainly due to the LPS alterations rather than to the incapacity to produce KPS.


Assuntos
Antígenos de Bactérias/biossíntese , Glycine max/microbiologia , Lipopolissacarídeos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Sinorhizobium fredii/genética , Sinorhizobium fredii/metabolismo , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Configuração de Carboidratos , Regulação Bacteriana da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Lipopolissacarídeos/química , Lipopolissacarídeos/genética , Nodulação/fisiologia , Raízes de Plantas/microbiologia , Polissacarídeos Bacterianos/genética
13.
Arch Microbiol ; 194(2): 87-102, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21761170

RESUMO

The Sinorhizobium fredii HH103 rkp-1 region, which is involved in capsular polysaccharide (KPS) biosynthesis, is constituted by the rkpU, rkpAGHIJ, and kpsF3 genes. Two mutants in this region affecting the rkpA (SVQ536) and rkpI (SVQ538) genes were constructed. Polyacrylamide gel electrophoresis and (1)H-NMR analyses did not detect KPS in these mutants. RT-PCR experiments indicated that, most probably, the rkpAGHI genes are cotranscribed. Glycine max cultivars (cvs.) Williams and Peking inoculated with mutants SVQ536 and SVQ538 showed reduced nodulation and symptoms of nitrogen starvation. Many pseudonodules were also formed on the American cv. Williams but not on the Asiatic cv. Peking, suggesting that in the determinate nodule-forming S. fredii-soybean symbiosis, bacterial KPS might be involved in determining cultivar-strain specificity. S. fredii HH103 mutants unable to produce KPS or exopolysaccharide (EPS) also showed reduced symbiotic capacity with Glycyrrhiza uralensis, an indeterminate nodule-forming legume. A HH103 exoA-rkpH double mutant unable to produce KPS and EPS was still able to form some nitrogen-fixing nodules on G. uralensis. Thus, here we describe for the first time a Sinorhizobium mutant strain, which produces neither KPS nor EPS is able to induce the formation of functional nodules in an indeterminate nodule-forming legume.


Assuntos
Glycyrrhiza uralensis/microbiologia , Polissacarídeos Bacterianos/metabolismo , Sinorhizobium fredii/metabolismo , Simbiose/genética , Proteínas de Bactérias/genética , Flavonoides/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos/genética , Teste de Complementação Genética , Glycyrrhiza uralensis/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutação , Fixação de Nitrogênio/genética , Polissacarídeos Bacterianos/genética , Nódulos Radiculares de Plantas/metabolismo , Sinorhizobium/genética , Sinorhizobium/metabolismo , Sinorhizobium fredii/genética , Glycine max/genética , Glycine max/metabolismo , Glycine max/microbiologia
14.
Res Microbiol ; 162(7): 715-23, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21600980

RESUMO

Legume-nodulating rhizobia use N-acyl homoserine lactones (AHLs) to regulate several physiological traits related to the symbiotic plant-microbe interaction. In this work, we show that Sinorhizobium fredii SMH12, Rhizobium etli ISP42 and Rhizobium sullae IS123, three rhizobial strains with different nodulation ranges, produced a similar pattern of AHL molecules, sharing, in all cases, production of N-octanoyl homoserine lactone and its 3-oxo and/or 3-hydroxy derivatives. Interestingly, production of AHLs was enhanced when these three rhizobia were grown in the presence of their respective nod-gene-inducing flavonoid, while a new molecule, C14-HSL, was produced by S. fredii SMH12 upon genistein induction. In addition, expression of AHL synthesis genes traI from S. fredii SMH12 and cinI and raiI from R. etli ISP42 increased when induced with flavonoids, as demonstrated by qRT-PCR analysis.


Assuntos
Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética , Flavonoides/metabolismo , Regulação Bacteriana da Expressão Gênica , Rhizobium/metabolismo , Sinorhizobium fredii/metabolismo , Proteínas de Bactérias/metabolismo , Fabaceae/microbiologia , Fabaceae/fisiologia , Dados de Sequência Molecular , Nodulação , Rhizobium/genética , Sinorhizobium fredii/genética
15.
J Bacteriol ; 193(1): 30-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20971905

RESUMO

The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gene cluster and the characterization of the chemical structure of the NFs associated with the broad-host-range Rhizobium sp. strain LPU83, a bacterium capable of nodulating at least alfalfa, bean, and Leucena leucocephala. The nod gene cluster was located on the plasmid pLPU83b. The organization of the cluster showed synteny with those of the alfalfa-nodulating rhizobia, Sinorhizobium meliloti and Sinorhizobium medicae. Interestingly, the strongest sequence similarity observed was between the partial nod sequences of Rhizobium mongolense USDA 1844 and the corresponding LPU83 nod genes sequences. The phylogenetic analysis of the intergenic region nodEG positions strain LPU83 and the type strain R. mongolense 1844 in the same branch, which indicates that Rhizobium sp. strain LPU83 might represent an early alfalfa-nodulating genotype. The NF chemical structures obtained for the wild-type strain consist of a trimeric, tetrameric, and pentameric chitin backbone that shares some substitutions with both alfalfa- and bean-nodulating rhizobia. Remarkably, while in strain LPU83 most of the NFs were sulfated in their reducing terminal residue, none of the NFs isolated from the nodH mutant LPU83-H were sulfated. The evidence obtained supports the notion that the sulfate decoration of NFs in LPU83 is not necessary for alfalfa nodulation.


Assuntos
Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Medicago sativa/microbiologia , Rhizobium/classificação , Rhizobium/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Filogenia , Nodulação/fisiologia , Simbiose/fisiologia
16.
Microbiology (Reading) ; 156(Pt 11): 3398-3411, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20688828

RESUMO

In this work, the role of the rkpU and rkpJ genes in the production of the K-antigen polysaccharides (KPS) and in the symbiotic capacity of Sinorhizobium fredii HH103, a broad host-range rhizobial strain able to nodulate soybean and many other legumes, was studied. The rkpJ- and rkpU-encoded products are orthologous to Escherichia coli proteins involved in capsule export. S. fredii HH103 mutant derivatives were contructed in both genes. To our knowledge, this is the first time that the role of rkpU in KPS production has been studied in rhizobia. Both rkpJ and rkpU mutants were unable to produce KPS. The rkpU derivative also showed alterations in its lipopolysaccharide (LPS). Neither KPS production nor rkpJ and rkpU expression was affected by the presence of the flavonoid genistein. Soybean (Glycine max) plants inoculated with the S. fredii HH103 rkpU and rkpJ mutants showed reduced nodulation and clear symptoms of nitrogen starvation. However, neither the rkpJ nor the rkpU mutants were significantly impaired in their symbiotic interaction with cowpea (Vigna unguiculata). Thus, we demonstrate for the first time to our knowledge the involvement of the rkpU gene in rhizobial KPS production and also show that the symbiotic relevance of the S. fredii HH103 KPS depends on the specific bacterium-legume interaction.


Assuntos
Glycine max/microbiologia , Nodulação , Polissacarídeos Bacterianos/biossíntese , Sinorhizobium fredii/genética , Simbiose , Antígenos de Bactérias/biossíntese , DNA Bacteriano/genética , Fabaceae/microbiologia , Genes Bacterianos , Teste de Complementação Genética , Genisteína/farmacologia , Mutação , Sinorhizobium fredii/crescimento & desenvolvimento , Sinorhizobium fredii/metabolismo , Especificidade da Espécie
17.
Mol Plant Microbe Interact ; 22(5): 575-88, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19348575

RESUMO

Sinorhizobium fredii HH103 produces cyclic beta glucans (CG) composed of 18 to 24 glucose residues without or with 1-phosphoglycerol as the only substituent. The S. fredii HH103-Rifr cgs gene (formerly known as ndvB) was sequenced and mutated with the lacZ-gentamicin resistance cassette. Mutant SVQ562 did not produce CG, was immobile, and grew more slowly in the hypoosmotic GYM medium, but its survival in distilled water was equal to that of HH103-Rifr. Lipopolysaccharides and K-antigen polysaccharides produced by SVQ562 were not apparently altered. SVQ562 overproduced exopolysaccharides (EPS) and its exoA gene was transcribed at higher levels than in HH103-Rifr. In GYM medium, the EPS produced by SVQ562 was of higher molecular weight and carried higher levels of substituents than that produced by HH103-Rifr. The expression of the SVQ562 cgsColon, two colonslacZ fusion was influenced by the pH and the osmolarity of the growth medium. The S. fredii cgs mutants SVQ561 (carrying cgs::Omega) and SVQ562 only formed pseudonodules on Glycine max (determinate nodules) and on Glycyrrhiza uralensis (indeterminate nodules). Although nodulation factors were detected in SVQ561 cultures, none of the cgs mutants induced any macroscopic response in Vigna unguiculata roots. Thus, the nodulation process induced by S. fredii cgs mutants is aborted at earlier stages in V. unguiculata than in Glycine max.


Assuntos
Proteínas de Bactérias/genética , Mutação , Polissacarídeos Bacterianos/metabolismo , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Sinorhizobium fredii/genética , Proteínas de Bactérias/metabolismo , DNA de Plantas/química , DNA de Plantas/genética , Flavonoides/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Glycyrrhiza uralensis/crescimento & desenvolvimento , Glycyrrhiza uralensis/microbiologia , Interações Hospedeiro-Patógeno , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Polissacarídeos Bacterianos/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Sinorhizobium fredii/metabolismo , Sinorhizobium fredii/fisiologia , Cloreto de Sódio/farmacologia , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , beta-Glucanas/análise , beta-Glucanas/metabolismo
18.
Carbohydr Res ; 343(18): 3066-70, 2008 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-18822411

RESUMO

The strain Lactobacillus pentosus LPS26 produces a capsular polymer composed of a high- (2.0x10(6)Da) (EPS A) and a low-molecular mass (2.4x10(4)Da) (EPS B) polysaccharide when grown on semi-defined medium containing glucose as the carbon source. The structure of EPS A and its deacetylated form has been determined by monosaccharide and methylation analysis as well as by 1D/2D NMR studies ((1)H and (13)C). We conclude that EPS A is a charged heteropolymer, with a composition of D-glucose, D-glucuronic acid and L-rhamnose in a molar ratio 1:2:2. The repeating unit is a pentasaccharide with two O-acetyl groups at O-4 of the 3-substituted alpha-D-glucuronic acid and at O-2 of the 3-substituted beta-L-rhamnose, respectively. -->4)-alpha-D-Glcp-(1-->3)-alpha-D-GlcpA4Ac-(1-->3)-alpha-L-Rhap-(1-->4)-alpha-D-GlcpA-(1-->3)-beta-L-Rhap2Ac-(1--> This unbranched structure is not common in EPSs produced by Lactobacilli. Moreover, the presence of acetyl groups in the structure is an unusual feature which has only been reported in L. sake 0-1 [Robijn et al. Carbohydr. Res., 1995, 276, 117-136].


Assuntos
Lactobacillus/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Sequência de Carboidratos , Glucose/química , Espectroscopia de Ressonância Magnética , Metilação , Dados de Sequência Molecular , Peso Molecular , Monossacarídeos/análise
19.
Biomacromolecules ; 9(2): 678-85, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18208318

RESUMO

The lipopolysaccharide of Sinorhizobium fredii SMH12, a wide-range host bacterium isolated from nodulated soybean plants growing in Vietnam, has been studied. Isolation of lipopolysaccharide by the phenol-water method leads to a mixture of two polysaccharides; polyacrylamide gel electrophoresis indicates that both are possibly lipopolysaccharides. The structures of the O-antigen of the main lipopolysaccharide and its deacetylated form are determined by sugar and methylation analysis, partial hydrolysis, lithium degradation, ESI-MS/MS, and NMR studies. Here we show that the fast-growing S. fredii SMH12 produces a lipopolysaccharide whose O-antigen has a repeating unit consisting of the trisaccharide -->4)-alpha-D-Gal pA-(1-->3)-2-O-Ac-alpha-L-Rha p-(1-->3)-2-O-Ac-alpha-D-Man p-(1-->. The position O-6 of the mannose residue in the repeating unit is unsubstituted, acetylated, or methylated in an approximate ratio 1:1:2. The tandem mass spectrometry studies rule out both an alternating and a random distribution of methyl groups and suggest the existence of zones in the polysaccharide rich in methyl groups interspersed with zones without methyl groups.


Assuntos
Antígenos O/química , Antígenos O/isolamento & purificação , Sinorhizobium fredii , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Estrutura Molecular , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação
20.
Arch Microbiol ; 189(4): 345-56, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18030448

RESUMO

Main nodulation signal molecules in the peanut-bradyrhizobia interaction were examined. Flavonoids exuded by Arachis hypogaea L. cultivar Tegua were genistein, daidzein and chrysin, the latest being released in lower quantities. Thin layer chromatography analysis from genistein-induced bacterial cultures of three peanut bradyrhizobia resulted in an identical Nod factor pattern, suggesting low variability in genes involved in the synthesis of these molecules. Structural study of Nod factor by mass spectrometry and NMR analysis revealed that it shares a variety of substituents with the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium spp. Nodulation assays in legumes nodulated by these rhizobia demonstrated differences between them and the three peanut bradyrhizobia. The three isolates were classified as Bradyrhizobium sp. Their fixation gene nifD and the common nodulation genes nodD and nodA were also analyzed.


Assuntos
Arachis/química , Arachis/microbiologia , Bradyrhizobium/química , Microbiologia do Solo , Simbiose , Arachis/fisiologia , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Flavonoides/química , Flavonoides/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/química , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...