Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 102: 129676, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408512

RESUMO

Synthesis of proteolysis targeting chimeras (PROTACs) involves conjugation of an E3 ligase binding ligand to a ligand targeting a protein of interest via a rigid or flexible chemical linker. The choice of linker conjugation site on these ligands can be informed by structural analysis of ligand-target binding modes, the feasibility of synthetic procedures to access specific sites, and computational modeling of predicted ternary complex formations. Small molecules that target bromodomains - epigenetic readers of lysine acetylation - typically offer several potential options for linker conjugation sites. Here we describe how varying the linker attachment site (exit vector) on a CBP/p300 bromodomain ligand along with linker length affects PROTAC degradation activity and ternary complex formation. Using kinetic live cell assays of endogenous CBP and p300 protein abundance and bead-based proximity assays for ternary complexes, we describe the structure-activity relationships of a diverse library of CBP/p300 degraders (dCBPs).


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Ligantes , Domínios Proteicos , Ligação Proteica , Relação Estrutura-Atividade , Proteólise
2.
Mol Cancer Ther ; 20(12): 2317-2328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34583982

RESUMO

The protein arginine methyltransferase 5 (PRMT5) methylates a variety of proteins involved in splicing, multiple signal transduction pathways, epigenetic control of gene expression, and mechanisms leading to protein expression required for cellular proliferation. Dysregulation of PRMT5 is associated with clinical features of several cancers, including lymphomas, lung cancer, and breast cancer. Here, we describe the characterization of JNJ-64619178, a novel, selective, and potent PRMT5 inhibitor, currently in clinical trials for patients with advanced solid tumors, non-Hodgkin's lymphoma, and lower-risk myelodysplastic syndrome. JNJ-64619178 demonstrated a prolonged inhibition of PRMT5 and potent antiproliferative activity in subsets of cancer cell lines derived from various histologies, including lung, breast, pancreatic, and hematological malignancies. In primary acute myelogenous leukemia samples, the presence of splicing factor mutations correlated with a higher ex vivo sensitivity to JNJ-64619178. Furthermore, the potent and unique mechanism of inhibition of JNJ-64619178, combined with highly optimized pharmacological properties, led to efficient tumor growth inhibition and regression in several xenograft models in vivo, with once-daily or intermittent oral-dosing schedules. An increase in splicing burden was observed upon JNJ-64619178 treatment. Overall, these observations support the continued clinical evaluation of JNJ-64619178 in patients with aberrant PRMT5 activity-driven tumors.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteína-Arginina N-Metiltransferases/efeitos dos fármacos , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Pirimidinas/farmacologia , Pirróis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...