Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958707

RESUMO

Pimelea poisoning of cattle causes distinct symptoms and frequently death, attributable to the toxin simplexin. Pimelea poisoning was induced via addition of ground Pimelea trichostachya plant to the daily feed in a three-month trial with Droughtmaster steers. The trial tested four potential mitigation treatments, namely, biochar, activated biochar, bentonite, and a bacterial inoculum, and incorporated negative and positive control groups. All treatments tested were unable to prevent the development of simplexin poisoning effects. However, steers consuming a bentonite adsorbent together with Pimelea showed lesser rates-of-decline for body weight (P < 0.05) and four hematological parameters (P < 0.02), compared to the positive control group fed Pimelea only. Microbiome analysis revealed that despite displaying poisoning symptoms, the rumen microbial populations of animals receiving Pimelea were very resilient, with dominant bacterial populations maintained over time. Unexpectedly, clinical edema developed in some animals up to 2 weeks after Pimelea dosing was ceased.

2.
Org Biomol Chem ; 22(14): 2863-2876, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525790

RESUMO

Pimelea poisoning of cattle is toxicologically linked to the activation of bovine protein kinase C (PKC) by the plant-derived toxin simplexin. To understand the affinity of PKC for simplexin, we performed molecular dynamics (MD) studies of simplexin, simplexin analogues, and several other activators of PKC. Binding enthalpy calculations indicated that simplexin had the strongest affinity for PKCα-C1B among the activators studied. Key to simplexin's affinity is its ability to form more hydrogen bonds to PKC, compared to the other activators. The C-3 carbonyl group and C-20 hydroxyl group of simplexin were identified as especially important for stabilizing the PKC binding interaction. The hydrophobic alkyl chain of simplexin induces deep membrane embedding of the PKC-simplexin complex, enhancing the protein-ligand hydrogen bonding. Our findings align with previous experiments on structure-activity relationships (SAR) for simplexin analogues, and provide insights that may guide the development of interventions or treatments for Pimelea poisoning.


Assuntos
Alcaloides , Proteína Quinase C , Bovinos , Animais , Proteína Quinase C/metabolismo , Simulação de Dinâmica Molecular , Terpenos , Ligação Proteica
3.
Microbiol Resour Announc ; 13(4): e0101223, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38501784

RESUMO

We report the 2.78-Mb circular genome sequence of Pyramidobacter sp. strain YE332, isolated from a fermentation of bovine rumen fluid, supplied with leaf material from Leucaena leucocephala cv. Cunningham. This genome sequence consists of 2,795,328 bp with 60% G + C content, 2,573 predicted coding DNA sequences, and 70 RNAs.

4.
Microbiol Spectr ; 10(4): e0087322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35863026

RESUMO

Buffalo flies (Haematobia irritans exigua) are hematophagous ectoparasites of cattle causing production and welfare impacts in northern Australian herds. Skin lesions associated with buffalo fly infestation and Stephanofilaria nematode infection are manifested as focal dermatitis or ulcerated areas, most commonly on the medial canthus of the eye, along the lateral and ventral neck, and on the abdomen of cattle. For closely related horn flies (Haematobia irritans irritans), Staphylococcus aureus has been suggested as a contributing factor in the development of lesions. To investigate the potential role of bacterial infection in the pathogenesis of buffalo fly lesions, swabs were taken from lesions and normal skin, and bacteria were also isolated from surface washings of buffalo flies and surface-sterilized homogenized flies. Bacterial identification was conducted by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and strain typing by repetitive sequence-based PCR (rep-PCR) and DNA sequencing to determine species similarity and virulence factors. Of 50 bacterial isolates collected from lesions, 38 were identified as Staphylococcus agnetis and 12 as Staphylococcus hyicus, whereas four isolates from normal skin were S. hyicus and one was Mammaliicoccus sciuri. Of the Staphylococcus isolates isolated from buffalo flies, five were identified as S. agnetis and three as S. hyicus. Fifty percent of the buffalo fly isolates had rep-PCR genotypic patterns identical to those of the lesion isolates. Genome sequencing of 16 S. agnetis and four S. hyicus isolates revealed closely similar virulence factor profiles, with all isolates possessing exfoliative toxin A and C genes. The findings from this study suggest the involvement of S. agnetis and S. hyicus in buffalo fly lesion pathogenesis. This should be taken into account in the development of effective treatment and control strategies for lesions. IMPORTANCE Skin lesions in cattle associated with feeding by Haematobia fly species are a significant welfare issue in Australia, North and South America, and Europe. The development of these lesions has been attributed to a number of causal factors, but the exact etiology and pathogenesis were unclear. This study characterized Staphylococcus agnetis and Staphylococcus hyicus strains from cattle skin lesions and in vector flies and demonstrated their role in the pathogenesis of these lesions. These findings will aid the development of targeted and more effective treatment and control strategies for lesions associated with fly infestation in cattle.


Assuntos
Muscidae , Staphylococcus hyicus , Animais , Austrália , Bovinos , Muscidae/microbiologia , Staphylococcus
5.
Toxins (Basel) ; 13(6)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071579

RESUMO

The leguminous plant species, Indigofera linnaei and Indigofera spicata are distributed throughout the rangeland regions of Australia and the compound indospicine (L-2-amino-6-amidinohexanoic acid) found in these palatable forage plants acts as a hepatotoxin and can accumulate in the meat of ruminant livestock and wild camels. In this study, bovine rumen fluid was cultivated in an in vitro fermentation system provided with Indigofera spicata plant material and the ability of the resulting mixed microbial populations to degrade indospicine was determined using UPLC-MS/MS over a 14 day time period. The microbial populations of the fermentation system were determined using 16S rRNA gene amplicon sequencing and showed distinct, time-related changes occurring as the rumen-derived microbes adapted to the fermentation conditions and the nutritional substrates provided by the Indigofera plant material. Within eight days of commencement, indospicine was completely degraded by the microbes cultivated within the fermenter, forming the degradation products 2-aminopimelamic acid and 2-aminopimelic acid within a 24 h time period. The in vitro fermentation approach enabled the development of a specifically adapted, mixed microbial population which has the potential to be used as a rumen drench for reducing the toxic side-effects and toxin accumulation associated with ingestion of Indigofera plant material by grazing ruminant livestock.


Assuntos
Bactérias/metabolismo , Indigofera/metabolismo , Norleucina/análogos & derivados , Rúmen/microbiologia , Animais , Bovinos , Fermentação , Microbiota , Norleucina/metabolismo
7.
Front Microbiol ; 11: 450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273870

RESUMO

The rumen contains a multi-kingdom, commensal microbiome, including protozoa, bacteria, archaea, fungi and viruses, which enables ruminant herbivores to ferment and utilize plant feedstuffs that would be otherwise indigestible. Within the rumen, virus populations are diverse and highly abundant, often out-numbering the microbial populations that they both predate on and co-exist with. To date the research effort devoted to understanding rumen-associated viral populations has been considerably less than that given to the other microbial populations, yet their contribution to maintaining microbial population balance, intra-ruminal microbial lysis, fiber breakdown, nutrient cycling and genetic transfer may be highly significant. This review follows the technological advances which have contributed to our current understanding of rumen viruses and drawing on knowledge from other environmental and animal-associated microbiomes, describes the known and potential roles and impacts viruses have on rumen function and speculates on the future directions of rumen viral research.

8.
FEMS Microbiol Lett ; 366(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314094

RESUMO

The rumen is known to contain DNA-based viruses, although it is not known whether RNA-based viruses that infect fungi (mycoviruses) are also present. Analysis of publicly available rumen metatranscriptome sequence data from sheep rumen samples (n = 20) was used to assess whether RNA-based viruses exist within the ovine rumen. A total of 2466 unique RNA viral contigs were identified that had homology to nine viral families. The Partitiviridae was the most consistently observed mycoviral family. High variation in the abundance of each detected mycovirus suggests that rumen mycoviral populations vary greatly between individual sheep. Functional analysis of the genes within the assembled mycoviral contigs suggests that the mycoviruses detected had simple genomes, often only carrying the machinery required for replication. The fungal population of the ovine rumen was also assessed using metagenomics data from the same samples, and was consistently dominated by the phyla Ascomycota and Basidomycota. The strictly anaerobic phyla Neocallimastigomycota were also present in all samples but at a low abundance. This preliminary investigation has provided clear evidence that mycoviruses with RNA genomes exist in the rumen, with further in-depth studies now required to characterise this mycoviral community and determine its role in the rumen.


Assuntos
Micovírus/genética , Perfilação da Expressão Gênica , Metagenômica , Rúmen/microbiologia , Ovinos/microbiologia , Transcriptoma , Animais , Biologia Computacional/métodos , Micovírus/classificação , Metagenoma
9.
Front Microbiol ; 8: 2340, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259581

RESUMO

The rumen is known to harbor dense populations of bacteriophages (phages) predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome.

10.
J Microbiol Methods ; 80(2): 217-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20005266

RESUMO

A novel method for screening bacterial isolates for their potential to inhibit the growth of ruminal methanogenic Archaea was developed using a modification of the soft agar overlay technique, formally used for the isolation of lytic bacteriophages. This method may be used in the specific, hydrogen-rich conditions required for the growth of ruminal methanogenic Archaea.


Assuntos
Antibiose , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Metano/metabolismo , Rúmen/microbiologia , Animais , Fenômenos Fisiológicos Bacterianos , Técnicas Bacteriológicas
11.
Int J Food Microbiol ; 121(2): 208-16, 2008 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-18068254

RESUMO

An experiment was conducted to determine whether diets based on structural carbohydrate and/or simple sugars, as found in roughage and/or molasses-based diets, reduce the bovine faecal populations of Shiga toxin-producing Escherichia coli (STEC) isolates containing the eaeA and ehxA genes, referred to as complex STEC (cSTEC), compared with typical high starch, grain-based feedlot diets. In addition, whether commercial lairage management practices promote or diminish any diet-induced responses on the contamination of carcasses was also investigated. After 13 days on the dietary treatments total faecal E. coli numbers were approximately one log lower in the roughage (R) and roughage +50% molasses (RM) diets compared with grain (G) fed animals, this difference varying between 0.5 and 1 log at lairage. Fermentation patterns were similar in the R and RM diets whereas decreased pH and enhanced butyrate fermentation pathways were associated with the G diet. A significant decrease in the faecal concentration of the eaeA gene occurred when animals were changed from high grain to R and RM diets for 6-13 days, compared with animals maintained on the G diet. Significantly lower concentrations of the ehxA gene were also associated with the R diet. Concentrations of the stx(2) gene however, were unaffected by diet. cSTEC were infrequently isolated, with the faecal concentrations of these organisms being low (<3 log(10) MPN per g faeces). cSTEC were only isolated from animals fed G or RM diets, but were never isolated from cattle fed the roughage-based diet, with this diet-induced effect sustained following lairage. These organisms were not detected on the hide and carcass of animals found to shed cSTEC in their faeces and thus appeared uncontaminated with cSTEC.


Assuntos
Matadouros , Ração Animal , Bovinos/microbiologia , Genes Bacterianos/genética , Escherichia coli Shiga Toxigênica/crescimento & desenvolvimento , Animais , Contagem de Colônia Microbiana , Fibras na Dieta/administração & dosagem , Grão Comestível , Fezes/microbiologia , Contaminação de Alimentos/prevenção & controle , Melaço , Escherichia coli Shiga Toxigênica/patogenicidade , Pele/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...