Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 599(1): 143-155, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052608

RESUMO

KEY POINTS: microRNAs (miRs) are small non-coding molecules that regulate post-transcriptional target gene expression. miRs are involved in regulating cellular activities in response to mechanical loading in all physiological systems, although it is largely unknown whether this response differs with increasing magnitudes of load. miR-221, miR-222, miR-21-5p and miR-27a-5p were significantly increased in ex vivo cartilage explants subjected to increasing load magnitude and in in vivo joint cartilage exposed to abnormal loading. TIMP3 and CPEB3 are putative miR targets in chondrocytes Identification of mechanically regulated miRs that have potential to impact on tissue homeostasis provides a mechanism by which load-induced tissue behaviour is regulated, in both health and pathology, in all physiological systems. ABSTRACT: MicroRNAs (miRs) are small non-coding molecules that regulate post-transcriptional target gene expression and are involved in mechano-regulation of cellular activities in all physiological systems. It is unknown whether such epigenetic mechanisms are regulated in response to increasing magnitudes of load. The present study investigated mechano-regulation of miRs in articular cartilage subjected to 'physiological' and 'non-physiological' compressive loads in vitro as a model system and validated findings in an in vivo model of abnormal joint loading. Bovine full-depth articular cartilage explants were loaded to 2.5 MPa (physiological) or 7 MPa (non-physiological) (1 Hz, 15 min) and mechanically-regulated miRs identified using next generation sequencing and verified using a quantitative PCR. Downstream targets were verified using miR-specific mimics or inhibitors in conjunction with 3'-UTR luciferase activity assays. A subset of miRs were mechanically-regulated in ex vivo cartilage explants and in vivo joint cartilage. miR-221, miR-222, miR-21-5p and miR-27a-5p were increased and miR-483 levels decreased with increasing load magnitude. Tissue inhibitor of metalloproteinase 3 (TIMP3) and cytoplasmic polyadenylation element binding protein 3 (CPEB3) were identified as putative downstream targets. Our data confirm miR-221 and -222 mechano-regulation and demonstrates novel mechano-regulation of miR-21-5p and miR-27a-5p in ex vivo and in vivo cartilage loading models. TIMP3 and CPEB3 are putative miR targets in chondrocytes. Identification of specific miRs that are regulated by increasing load magnitude, as well as their potential to impact on tissue homeostasis, has direct relevance to other mechano-sensitive physiological systems and provides a mechanism by which load-induced tissue behaviour is regulated, in both health and pathology.


Assuntos
Cartilagem Articular , MicroRNAs , Animais , Bovinos , Condrócitos , MicroRNAs/genética
2.
JCI Insight ; 5(13)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32544091

RESUMO

Musculoskeletal disorders represent the third greatest burden in terms of death and disability in the developed world. Osteoarthritis is the single greatest cause of chronic pain, has no cure, and affects 8.5 and 27 million people in the UK and US, respectively. Osteoarthritis is most prevalent in older people, but as it commonly occurs after joint injury, young people with such injuries are also susceptible. Painful joints are often treated with steroid or hyaluronic acid (HA) injections, but treatments to prevent subsequent joint degeneration remain elusive. In animals, joint injury increases glutamate release into the joint, acting on nerves to cause pain, and joint tissues to cause inflammation and degeneration. This study investigated synovial fluid glutamate concentrations and glutamate receptor (GluR) expression in injured human joints and compared the efficacy of GluR antagonists with current treatments in a mouse model of injury-induced osteoarthritis (ACL rupture). GluRs were expressed in the ligaments and meniscus after knee injury, and synovial fluid glutamate concentrations ranged from 19 to 129 µM. Intra-articular injection of NBQX (GluR antagonist) at the time of injury substantially reduced swelling and degeneration in the mouse ACL rupture model. HA had no effect, and Depo-Medrone reduced swelling for 1 day but increased degeneration by 50%. Intra-articular administration of NBQX modified both symptoms and disease to a greater extent than current treatments. There is an opportunity for repurposing related drugs, developed for CNS disorders and with proven safety in humans, to prevent injury-induced osteoarthritis. This could quickly reduce the substantial burden associated with osteoarthritis.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Inflamação/tratamento farmacológico , Osteoartrite/prevenção & controle , Adolescente , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Ácido Glutâmico/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/prevenção & controle , Ácido Caínico/metabolismo , Ácido Caínico/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Osteoartrite/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
3.
Front Endocrinol (Lausanne) ; 11: 630875, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33658983

RESUMO

The discovery that sclerostin is the defective protein underlying the rare heritable bone mass disorder, sclerosteosis, ultimately led to development of anti-sclerostin antibodies as a new treatment for osteoporosis. In the era of large scale GWAS, many additional genetic signals associated with bone mass and related traits have since been reported. However, how best to interrogate these signals in order to identify the underlying gene responsible for these genetic associations, a prerequisite for identifying drug targets for further treatments, remains a challenge. The resources available for supporting functional genomics research continues to expand, exemplified by "multi-omics" database resources, with improved availability of datasets derived from bone tissues. These databases provide information about potential molecular mediators such as mRNA expression, protein expression, and DNA methylation levels, which can be interrogated to map genetic signals to specific genes based on identification of causal pathways between the genetic signal and the phenotype being studied. Functional evaluation of potential causative genes has been facilitated by characterization of the "osteocyte signature", by broad phenotyping of knockout mice with deletions of over 7,000 genes, in which more detailed skeletal phenotyping is currently being undertaken, and by development of zebrafish as a highly efficient additional in vivo model for functional studies of the skeleton. Looking to the future, this expanding repertoire of tools offers the hope of accurately defining the major genetic signals which contribute to osteoporosis. This may in turn lead to the identification of additional therapeutic targets, and ultimately new treatments for osteoporosis.


Assuntos
Densidade Óssea/fisiologia , Educação/tendências , Genômica/tendências , Osteoporose/genética , Relatório de Pesquisa/tendências , Sociedades Médicas/tendências , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Educação/métodos , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/tendências , Genômica/métodos , Humanos , Camundongos , Osteoporose/diagnóstico , Osteoporose/terapia , Peixe-Zebra
4.
J Orthop Res ; 2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29453795

RESUMO

Joint injury is the predominant risk factor for post-traumatic osteoarthritis development (PTOA). Several non-invasive mouse models mimicking human PTOA investigate molecular mechanisms of disease development; none have characterized the inflammatory response to this acute traumatic injury. Our aim was to characterize the early inflammatory phase and later degenerative component in our in vivo non-invasive murine model of PTOA induced by anterior cruciate ligament (ACL) rupture. Right knees of 12-week-old C57Bl6 mice were placed in flexion at a 30° offset position and subjected to a single compressive load (12N, 1.4 mm/s) to induce ACL rupture with no obvious damage to surrounding tissues. Tissue was harvested 4 h post-injury and on days 3, 14, and 21; contralateral left knees served as controls. Histological, immunohistochemical, and gene analyzes were performed to evaluate inflammatory and degenerative changes. Immunohistochemistry revealed time-dependent expression of mature (F4/80 positive) and inflammatory (CD11b positive) macrophage populations within the sub-synovial infiltrate, developing osteophytes, and inflammation surrounding the ACL in response to injury. Up-regulation of genes encoding acute pro-inflammatory markers, inducible nitric oxide synthase, interleukin-6 and interleukin-17, and the matrix degrading enzymes, ADAMTS-4 and MMP3 was detected in femoral cartilage, concomitant with extensive cartilage damage and bone remodelling over 21-days post-injury. Our non-invasive model describes pathologically distinct phases of the disease, increasing our understanding of inflammatory episodes, the tissues/cells producing inflammatory mediators and the early molecular changes in the joint, thereby defining the early phenotype of PTOA. This knowledge will guide appropriate interventions to delay or arrest disease progression following joint injury. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 9999:1-10, 2018.

5.
Ann Rheum Dis ; 74(1): 242-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24130267

RESUMO

OBJECTIVES: Synovial fluid glutamate concentrations increase in arthritis. Activation of kainate (KA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) increase interleukin-6 (IL-6) release and cause arthritic pain, respectively. We hypothesised that AMPA and KA GluRs are expressed in human arthritis, and that intra-articular NBQX (AMPA/KA GluR antagonist) prevents pain and pathology in antigen-induced arthritis (AIA). METHODS: GluR immunohistochemistry was related to synovial inflammation and degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). A single intra-articular NBQX injection was given at induction, and knee swelling and gait of AIA and AIA+NBQX rats compared over 21 days, before imaging, RT-qPCR, histology and immunohistochemistry of joints. Effects of NBQX on human primary osteoblast (HOB) activity were determined. RESULTS: AMPAR2 and KA1 immunolocalised to remodelling bone, cartilage and synovial cells in human OA and RA, and rat AIA. All arthritic tissues showed degradation and synovial inflammation. NBQX reduced GluR abundance, knee swelling (p<0.001, days 1-21), gait abnormalities (days 1-2), end-stage joint destruction (p<0.001), synovial inflammation (p<0.001), and messenger RNA expression of meniscal IL-6 (p<0.05) and whole joint cathepsin K (p<0.01). X-ray and MRI revealed fewer cartilage and bone erosions, and less inflammation after NBQX treatment. NBQX reduced HOB number and prevented mineralisation. CONCLUSIONS: AMPA/KA GluRs are expressed in human OA and RA, and in AIA, where a single intra-articular injection of NBQX reduced swelling by 33%, and inflammation and degeneration scores by 34% and 27%, respectively, exceeding the efficacy of approved drugs in the same model. AMPA/KA GluR antagonists represent a potential treatment for arthritis.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Dor/metabolismo , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Membrana Sinovial/metabolismo , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Reumatoide/imunologia , Comportamento Animal/efeitos dos fármacos , Cartilagem Articular/diagnóstico por imagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Interleucina-6/metabolismo , Articulação do Joelho/diagnóstico por imagem , Masculino , Meniscos Tibiais/metabolismo , Osteoartrite/imunologia , Osteoblastos , Dor/imunologia , Quinoxalinas/farmacologia , Radiografia , Ratos , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/imunologia , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/imunologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-25368604

RESUMO

OBJECTIVE: Protein kinase-like endoplasmic reticulum kinase (PERK) and protein kinase R (PKR) are implicated in endoplasmic reticulum stress-induced arthritis and pro-inflammatory cytokine-mediated cartilage degradation in vitro, respectively. We determined whether knockout of the cellular inhibitor of PERK and PKR, P58(IPK) causes joint degeneration in vivo and whether these molecules are activated in human osteoarthritis (OA). MATERIALS AND METHODS: Sections of knee joints from P58(IPK)-null and wild-type mice aged 12-13 and 23-25 months were stained with toluidine blue and scored for degeneration using the osteoarthritis research society international (OARSI) system. Bone changes were assessed by radiology and high-resolution micro-computed tomography of hind limbs. Sections from the medial tibial plateaus of two human knees, removed in total knee replacement surgery for OA, were immunolabelled for phosphorylated PERK and PKR and P58(IPK). RESULTS: Knockout mice exhibited narrower tibiae (p = 0.0031) and smaller epiphyses in tibiae (p = 0.0004) and femora (p = 0.0214). Older knockout mice had reduced total volume inside the femoral periosteal envelope (p = 0.023), reduced tibial (p = 0.03), and femoral (p = 0.0012) bone volumes (BV) and reduced femoral BV fraction (p = 0.025). Compared with wild-types, younger P58(IPK)-null mice had increased OARSI scores in medial femoral condyles (p = 0.035). Thirty four percent of null mice displayed severe joint degeneration with complete articular cartilage loss from the medial compartment and heterotopic chondro-osseous tissue in the medial joint capsule. Phosphorylated PERK and PKR were localized throughout human osteoarthritic tibial plateaus but, in particular, in areas exhibiting the most degeneration. There was limited expression of P58(IPK). CONCLUSION: This study is the first to reveal a critical role for P58(IPK) in maintaining joint integrity in vivo, implicating the PKR and PERK stress signaling pathways in bony changes underlying the pathogenesis of joint degeneration.

7.
J Biol Chem ; 286(40): 34986-97, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21768108

RESUMO

Type IX collagen is covalently bound to the surface of type II collagen fibrils within the cartilage extracellular matrix. The N-terminal, globular noncollagenous domain (NC4) of the α1(IX) chain protrudes away from the surface of the fibrils into the surrounding matrix and is available for molecular interactions. To define these interactions, we used the NC4 domain in a yeast two-hybrid screen of a human chondrocyte cDNA library. 73% of the interacting clones encoded fibronectin. The interaction was confirmed using in vitro immunoprecipitation and was further characterized by surface plasmon resonance. Using whole and pepsin-derived preparations of type IX collagen, the interaction was shown to be specific for the NC4 domain with no interaction with the triple helical collagenous domains. The interaction was shown to be of high affinity with nanomolar K(d) values. Analysis of the fibronectin-interacting clones indicates that the constant domain is the likely site of interaction. Type IX collagen and fibronectin were shown to co-localize in cartilage. This novel interaction between the NC4 domain of type IX collagen and fibronectin may represent an in vivo interaction in cartilage that could contribute to the matrix integrity of the tissue.


Assuntos
Cartilagem Articular/metabolismo , Colágeno Tipo IX/metabolismo , Fibronectinas/metabolismo , Animais , Cartilagem/metabolismo , Linhagem Celular , Condrócitos/metabolismo , DNA Complementar/metabolismo , Humanos , Cinética , Camundongos , Reação em Cadeia da Polimerase , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Técnicas do Sistema de Duplo-Híbrido
8.
Microsc Res Tech ; 72(7): 501-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19301267

RESUMO

Immunofluorescence labeling on postembedded tissue in resin is a formidable task. Although resin components and stabilizers are a source of additional strong native fluorescence that overlaps with absorption and emission spectra of commonly used green fluorophores, the unfixed tissue is also subject to native fluorescence. For tissue embedded in resin, we hypothesized that initially removing the resin and subsequently quenching the native fluorescence from the sample could result in specific immunofluorescence signals. The hypothesis was tested on fixed tissue samples embedded in Technovit 9100 New. Deacrylated and rehydrated semithin sections from a variety of soft tissues were exposed to a quenching solution prior to immunolabeling. Cryostat sections from snap frozen tissue were also stained to assess whether all antigens investigated in fixed tissue were adequately detected. The secondary detection included antibodies conjugated with fluorescein isothiocyanate. The results were evaluated using conventional dark-field and confocal laser scanning microscopy. Both forms of microscopy confirmed the considerable lowering of the native fluorescence associated with the resin and fixed tissue samples with enhanced specific signal. The cryostat tissue sections using the same antibodies in equivalent concentrations confirmed labeling of the same cellular sites as those observed in the fixed tissue. This article describes a method for immunofluorescence labeling in Technovit 9100 New resin embedded tissue and suggests the likely chromogenic elements generating autofluorescence.


Assuntos
Imunofluorescência/métodos , Patologia/métodos , Coloração e Rotulagem/métodos , Resinas Acrílicas , Animais , Crioultramicrotomia/métodos , Fluoresceína-5-Isotiocianato/farmacologia , Corantes Fluorescentes/farmacologia , Camundongos , Microscopia Confocal , Inclusão em Plástico/métodos
9.
Tissue Eng Part A ; 15(7): 1739-49, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19119922

RESUMO

OBJECTIVE: Experimental wounding of articular cartilage results in cell death at the lesion edge. The objective of this study was to investigate whether inhibition of this cell death results in enhanced integrative cartilage repair. METHODS: Bovine articular cartilage discs (6 mm) were incubated in media containing inhibitors of necrosis (Necrostatin-1, Nec-1) or apoptosis (Z-VAD-FMK, ZVF) before cutting a 3 mm inner core. This core was left in situ to create disc/ring composites, cultured for up to 6 weeks with the inhibitors, and analyzed for cell death, sulfated glycosaminoglycan release, and tissue integration. RESULTS: Creating the disc/ring composites resulted in a significant increase in necrosis. ZVF significantly reduced necrosis and apoptosis at the wound edge. Nec-1 reduced necrosis. Both inhibitors reduced the level of wound-induced sulfated glycosaminoglycan loss. Toluidine blue staining and electron microscopy of cartilage revealed significant integration of the wound edges in disc/ring composites treated with ZVF. Nec-1 improved integration, but to a lesser extent. Push-out testing revealed that ZVF increased adhesive strength compared to control composites. CONCLUSIONS: This study shows that treatment of articular cartilage with cell death inhibitors during wound repair increases the number of viable cells at the wound edge, prevents matrix loss, and results in a significant improvement in cartilage-cartilage integration.


Assuntos
Cartilagem/patologia , Condrócitos/patologia , Engenharia Tecidual , Cicatrização , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/enzimologia , Cartilagem/ultraestrutura , Inibidores de Caspase , Bovinos , Morte Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Imuno-Histoquímica , Indóis/farmacologia , Teste de Materiais , Fenômenos Mecânicos/efeitos dos fármacos , Proteoglicanas/metabolismo , Cicatrização/efeitos dos fármacos
10.
Tissue Eng Part A ; 14(7): 1251-61, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18399732

RESUMO

Research into articular cartilage repair, a tissue unable to spontaneously regenerate once injured, has focused on the generation of a biomechanically functional repair tissue with the characteristics of hyaline cartilage. This study was undertaken to provide insight into how to improve ex vivo chondrocyte amplification, without cellular dedifferentiation for cell-based methods of cartilage repair. We investigated the effects of insulin-like growth factor 1 (IGF-1) and transforming growth factor beta 1 (TGFbeta1) on cell proliferation and the de novo synthesis of sulfated glycosaminoglycans and collagen in chondrocytes isolated from skeletally mature bovine articular cartilage, whilst maintaining their chondrocytic phenotype. Here we demonstrate that mature differentiated chondrocytes respond to growth factor stimulation to promote de novo synthesis of matrix macromolecules. Additionally, chondrocytes stimulated with IGF-1 or TGFbeta1 induced receptor expression. We conclude that IGF-1 and TGFbeta1 in addition to autoregulatory effects have differential effects on each other when used in combination. This may be mediated by regulation of receptor expression or endogenous factors; these findings offer further options for improving strategies for repair of cartilage defects.


Assuntos
Cartilagem Articular/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Regeneração/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Animais , Cartilagem Articular/lesões , Cartilagem Articular/patologia , Bovinos , Condrócitos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/biossíntese , Receptor IGF Tipo 1/biossíntese , Receptores de Fatores de Crescimento Transformadores beta/biossíntese
11.
Matrix Biol ; 25(7): 398-408, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16876394

RESUMO

Articular cartilage functions in dissipating forces applied across joints. It comprises an extracellular matrix containing primarily collagens, proteoglycans and water to maintain its functional properties, and is interspersed with chondrocytes. The chondrocyte cytoskeleton comprises actin microfilaments, tubulin microtubules and vimentin intermediate filaments. Previous studies have determined the contribution of actin and tubulin in regulating the synthesis of the extracellular matrix components aggrecan and type II collagen. The contribution of vimentin to extracellular matrix biosynthesis in any cell type has not previously been addressed. Therefore the aim of this study was to assess the role of vimentin in cartilage chondrocyte metabolism. Vimentin intermediate filaments were disrupted in high-density monolayer articular chondrocyte cultures using acrylamide for 7 days. De novo protein and collagen synthesis were measured by adding [3H]-proline, and sulphated glycosaminoglycan (sGAG) synthesis measured by adding [35S]-sulphate to cultures. Vimentin disruption resulted in decreased collagen synthesis, whilst sGAG synthesis was unaffected. In addition, there was a significant reduction in type II collagen and aggrecan gene transcription suggesting that the effects observed occur at both the transcriptional and translational levels. A 3-day cold chase demonstrated a significant inhibition of collagen and sGAG degradation; the reduction in collagen degradation was corroborated by the observed reduction in both pro-MMP 2 expression and activation. We have demonstrated that an intact vimentin intermediate filament network contributes to the maintenance of the chondrocyte phenotype and thus an imbalance favouring filament disassembly can disturb the integrity of the articular cartilage, and may ultimately lead to the development of pathologies such as osteoarthritis.


Assuntos
Cartilagem Articular/patologia , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Vimentina/metabolismo , Acrilamida/farmacologia , Animais , Cartilagem Articular/metabolismo , Bovinos , Contagem de Células , Morte Celular , Células Cultivadas , Condrócitos/efeitos dos fármacos , Colágeno/biossíntese , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Homeostase , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Metaloproteinases da Matriz/metabolismo , Sulfatos/metabolismo , Vimentina/efeitos dos fármacos
12.
Arthritis Res Ther ; 8(4): R89, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16696862

RESUMO

We previously established a role for the second messenger ceramide in protein kinase R (PKR)-mediated articular cartilage degradation. Ceramide is known to play a dual role in collagen gene regulation, with the effect of ceramide on collagen promoter activity being dependent on its concentration. Treatment of cells with low doses of sphingomyelinase produces small increases in endogenous ceramide. We investigated whether ceramide influences articular chondrocyte matrix homeostasis and, if so, the role of PKR in this process. Bovine articular chondrocytes were stimulated for 7 days with sphingomyelinase to increase endogenous levels of ceramide. To inhibit PKR, 2-aminopurine was added to duplicate cultures. De novo sulphated glycosaminoglycan and collagen synthesis were measured by adding [35S]-sulphate and [3H]-proline to the media, respectively. Chondrocyte phenotype was investigated using RT-PCR and Western blot analysis. Over 7 days, sphingomyelinase increased the release of newly synthesized sulphated glycosaminoglycan and collagen into the media, whereas inhibition of PKR in sphingomyelinase-treated cells reduced the level of newly synthesized sulphated glycosaminoglycan and collagen. Sphingomyelinase treated chondrocytes expressed col2a1 mRNA, which is indicative of a normal chondrocyte phenotype; however, a significant reduction in type II collagen protein was detected. Therefore, small increments in endogenous ceramide in chondrocytes appear to push the homeostatic balance toward extracellular matrix synthesis but at the expense of the chondrocytic phenotype, which was, in part, mediated by PKR.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Colágeno/biossíntese , Glicosaminoglicanos/biossíntese , Esfingomielina Fosfodiesterase/farmacologia , Animais , Cartilagem Articular/citologia , Bovinos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Relação Dose-Resposta a Droga , Matriz Extracelular/metabolismo , Homeostase , Fenótipo , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielina Fosfodiesterase/química , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo
13.
Arthritis Res Ther ; 6(1): R46-R55, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14979937

RESUMO

We investigated the role of the proinflammatory cytokine TNF-alpha, the second messenger C2-ceramide, and protein kinase R (PKR) in bovine articular cartilage degradation. Bovine articular cartilage explants were stimulated with C2-ceramide or TNF-alpha for 24 hours. To inhibit the activation of PKR, 2-aminopurine was added to duplicate cultures. Matrix metalloproteinase (MMP) expression and activation in the medium were analysed by gelatin zymography, proteoglycan release by the dimethylmethylene blue assay, and cell viability by the Cytotox 96(R) assay. C2-ceramide treatment of cartilage explants resulted in a significant release of both pro- and active MMP-2 into the medium. Small increases were also seen with TNF-alpha treatment. Incubation of explants with 2-aminopurine before TNF-alpha or C2-ceramide treatment resulted in a marked reduction in expression and activation of both MMP-2 and MMP-9. TNF-alpha and C2-ceramide significantly increased proteoglycan release into the medium, which was also inhibited by cotreatment with 2-aminopurine. A loss of cell viability was observed when explants were treated with TNF-alpha and C2-ceramide, which was found to be regulated by PKR. We have shown that C2-ceramide and TNF-alpha treatment of articular cartilage result in the increased synthesis and activation of MMPs, increased release of proteoglycan, and increased cell death. These effects are abrogated by treatment with the PKR inhibitor 2-aminopurine. Collectively, these results suggest a novel role for PKR in the synthesis and activation of MMPs and support our hypothesis that PKR and its activator, PACT, are implicated in the cartilage degradation that occurs in arthritic disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...