Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437301

RESUMO

Avian H7N9 influenza viruses cause sporadic outbreaks of human infections and threaten to cause a major pandemic. The breadth of B cell responses to natural infection and the dominant antigenic sites recognized during first exposure to H7 HA following infection are incompletely understood. Here, we studied the B cell response to H7 HA of 2 individuals who had recovered from natural H7N9 virus infection. We used competition binding, hydrogen-deuterium mass spectrometry, and single-particle negative stain electron microscopy to identify the patterns of molecular recognition of the antibody responses to H7 HA. We found that circulating H7-reactive B cells recognized a diverse antigenic landscape on the HA molecule, including HA head domain epitopes in antigenic sites A and B and in the trimer interface-II region and epitopes in the stem region. Most H7 antibodies exhibited little heterosubtypic breadth, but many recognized a wide diversity of unrelated H7 strains. We tested the antibodies for functional activity and identified clones with diverse patterns of inhibition, including neutralizing, hemagglutination- or egress-inhibiting, or HA trimer-disrupting activities. Thus, the human B cell response to primary H7 natural infection is diverse, highly functional, and broad for recognition of diverse H7 strains.


Assuntos
Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Humanos
2.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156974

RESUMO

Broadly reactive antibodies targeting the influenza A virus hemagglutinin (HA) head domain are thought to be rare and to require extensive somatic mutations or unusual structural features to achieve breadth against divergent HA subtypes. Here we describe common genetic and structural features of protective human antibodies from several individuals recognizing the trimer interface (TI) of the influenza A HA head, a recently identified site of vulnerability. We examined the sequence of TI-reactive antibodies, determined crystal structures for TI antibody-antigen complexes, and analyzed the contact residues of the antibodies on HA to discover common genetic and structural features of TI antibodies. Our data reveal that many TI antibodies are encoded by a light chain variable gene segment incorporating a shared somatic mutation. In addition, these antibodies have a shared acidic residue in the heavy chain despite originating from diverse heavy chain variable gene segments. These studies show that the TI region of influenza A HA is a major antigenic site with conserved structural features that are recognized by a common human B cell public clonotype. The canonical nature of this antibody-antigen interaction suggests that the TI epitope might serve as an important target for structure-based vaccine design.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H1N1/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/química , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia
3.
Structure ; 28(10): 1114-1123.e4, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32610044

RESUMO

The influenza hemagglutinin (HA) glycoprotein is the target of many broadly neutralizing antibodies. However, influenza viruses can rapidly escape antibody recognition by mutation of hypervariable regions of HA that overlap with the binding epitope. We hypothesized that by designing peptides to mimic antibody loops, we could enhance breadth of binding to HA antigenic variants by reducing contact with hypervariable residues on HA that mediate escape. We designed cyclic peptides that mimic the heavy-chain complementarity-determining region 3 (CDRH3) of anti-influenza broadly neutralizing antibody C05 and show that these peptides bound to HA molecules with <100 nM affinity, comparable with that of the full-length parental C05 IgG. In addition, these peptides exhibited increased breadth of recognition to influenza H4 and H7 subtypes by eliminating clashes between the hypervariable antigenic regions and the antibody CDRH1 loop. This approach can be used to generate antibody-derived peptides against a wide variety of targets.


Assuntos
Anticorpos Neutralizantes/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Sítios de Ligação de Anticorpos , Regiões Determinantes de Complementaridade/química , Cães , Desenho de Fármacos , Epitopos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H1N1/química , Células Madin Darby de Rim Canino , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/imunologia , Estudo de Prova de Conceito , Conformação Proteica , Engenharia de Proteínas/métodos , Carga de Trabalho
4.
Cell Host Microbe ; 26(6): 729-738.e4, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31757767

RESUMO

Influenza virus neuraminidase (NA) is a major target for small-molecule antiviral drugs. Antibodies targeting the NA surface antigen could also inhibit virus entry and egress to provide host protection. However, our understanding of the nature and range of target epitopes is limited because of a lack of human antibody structures with influenza neuraminidase. Here, we describe crystal and cryogenic electron microscopy (cryo-EM) structures of NAs from human-infecting avian H7N9 viruses in complex with five human anti-N9 antibodies, systematically defining several antigenic sites and antibody epitope footprints. These antibodies either fully or partially block the NA active site or bind to epitopes distant from the active site while still showing neuraminidase inhibition. The inhibition of antibodies to NAs was further analyzed by glycan array and solution-based NA activity assays. Together, these structural studies provide insights into protection by anti-NA antibodies and templates for the development of NA-based influenza virus vaccines and therapeutics.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos/ultraestrutura , Neuraminidase , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/ultraestrutura , Antivirais/imunologia , Microscopia Crioeletrônica , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza , Neuraminidase/química , Neuraminidase/ultraestrutura , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/química , Proteínas Virais/ultraestrutura
5.
Cell Host Microbe ; 26(6): 715-728.e8, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31757769

RESUMO

H7N9 avian influenza virus causes severe infections and might have the potential to trigger a major pandemic. Molecular determinants of human humoral immune response to N9 neuraminidase (NA) proteins, which exhibit unusual features compared with seasonal influenza virus NA proteins, are ill-defined. We isolated 35 human monoclonal antibodies (mAbs) from two H7N9 survivors and two vaccinees. These mAbs react to NA in a subtype-specific manner and recognize diverse antigenic sites on the surface of N9 NA, including epitopes overlapping with, or distinct from, the enzyme active site. Despite recognizing multiple antigenic sites, the mAbs use a common mechanism of action by blocking egress of nascent virions from infected cells, thereby providing an antiviral prophylactic and therapeutic protection in vivo in mice. Studies of breadth, potency, and diversity of antigenic recognition from four subjects suggest that vaccination with inactivated adjuvanted vaccine induce NA-reactive responses comparable to that of H7N9 natural infection.


Assuntos
Anticorpos Neutralizantes , Subtipo H7N9 do Vírus da Influenza A/imunologia , Neuraminidase/imunologia , Infecções por Orthomyxoviridae , Liberação de Vírus/efeitos dos fármacos , Animais , Anticorpos Heterófilos/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Aves , Epitopos/imunologia , Humanos , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Vacinas contra Influenza/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Profilaxia Pré-Exposição , Vacinação , Vacinas de Produtos Inativados , Proteínas Virais/imunologia
6.
Proc Natl Acad Sci U S A ; 116(5): 1597-1602, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30642961

RESUMO

Influenza is a yearly threat to global public health. Rapid changes in influenza surface proteins resulting from antigenic drift and shift events make it difficult to readily identify antibodies with broadly neutralizing activity against different influenza subtypes with high frequency, specifically antibodies targeting the receptor binding domain (RBD) on influenza HA protein. We developed an optimized computational design method that is able to optimize an antibody for recognition of large panels of antigens. To demonstrate the utility of this multistate design method, we used it to redesign an antiinfluenza antibody against a large panel of more than 500 seasonal HA antigens of the H1 subtype. As a proof of concept, we tested this method on a variety of known antiinfluenza antibodies and identified those that could be improved computationally. We generated redesigned variants of antibody C05 to the HA RBD and experimentally characterized variants that exhibited improved breadth and affinity against our panel. C05 mutants exhibited improved affinity for three of the subtypes used in design by stabilizing the CDRH3 loop and creating favorable electrostatic interactions with the antigen. These mutants possess increased breadth and affinity of binding while maintaining high-affinity binding to existing targets, surpassing a major limitation up to this point.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/imunologia , Cristalografia por Raios X/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Estações do Ano
7.
Nat Commun ; 9(1): 2669, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991715

RESUMO

The high rate of antigenic drift in seasonal influenza viruses necessitates frequent changes in vaccine composition. Recent seasonal H3 vaccines do not protect against swine-origin H3N2 variant (H3N2v) strains that recently have caused severe human infections. Here, we report a human VH1-69 gene-encoded monoclonal antibody (mAb) designated H3v-47 that exhibits potent cross-reactive neutralization activity against human and swine H3N2 viruses that circulated since 1989. The crystal structure and electron microscopy reconstruction of H3v-47 Fab with the H3N2v hemagglutinin (HA) identify a unique epitope spanning the vestigial esterase and receptor-binding subdomains that is distinct from that of any known neutralizing antibody for influenza A H3 viruses. MAb H3v-47 functions largely by blocking viral egress from infected cells. Interestingly, H3v-47 also engages Fcγ receptor and mediates antibody dependent cellular cytotoxicity (ADCC). This newly identified conserved epitope can be used in design of novel immunogens for development of broadly protective H3 vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Reações Cruzadas/imunologia , Epitopos/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia
8.
J Biol Chem ; 293(1): 390-401, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29123031

RESUMO

Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, and VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138- and VACV-304-binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.


Assuntos
Anticorpos Antivirais/ultraestrutura , Moléculas de Adesão Celular/imunologia , Proteínas do Envelope Viral/química , Anticorpos/metabolismo , Anticorpos/fisiologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/fisiologia , Antígenos Virais/imunologia , Cristalografia por Raios X/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/química , Humanos , Testes de Neutralização , Ligação Proteica , Relação Estrutura-Atividade , Vaccinia virus/imunologia , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...