Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Med J ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009424

RESUMO

BACKGROUND: Artificial intelligence (AI)-assisted image interpretation is a fast-developing area of clinical innovation. Most research to date has focused on the performance of AI-assisted algorithms in comparison with that of radiologists rather than evaluating the algorithms' impact on the clinicians who often undertake initial image interpretation in routine clinical practice. This study assessed the impact of AI-assisted image interpretation on the diagnostic performance of frontline acute care clinicians for the detection of pneumothoraces (PTX). METHODS: A multicentre blinded multi-case multi-reader study was conducted between October 2021 and January 2022. The online study recruited 18 clinician readers from six different clinical specialties, with differing levels of seniority, across four English hospitals. The study included 395 plain CXR images, 189 positive for PTX and 206 negative. The reference standard was the consensus opinion of two thoracic radiologists with a third acting as arbitrator. General Electric Healthcare Critical Care Suite (GEHC CCS) PTX algorithm was applied to the final dataset. Readers individually interpreted the dataset without AI assistance, recording the presence or absence of a PTX and a confidence rating. Following a 'washout' period, this process was repeated including the AI output. RESULTS: Analysis of the performance of the algorithm for detecting or ruling out a PTX revealed an overall AUROC of 0.939. Overall reader sensitivity increased by 11.4% (95% CI 4.8, 18.0, p=0.002) from 66.8% (95% CI 57.3, 76.2) unaided to 78.1% aided (95% CI 72.2, 84.0, p=0.002), specificity 93.9% (95% CI 90.9, 97.0) without AI to 95.8% (95% CI 93.7, 97.9, p=0.247). The junior reader subgroup showed the largest improvement at 21.7% (95% CI 10.9, 32.6), increasing from 56.0% (95% CI 37.7, 74.3) to 77.7% (95% CI 65.8, 89.7, p<0.01). CONCLUSION: The study indicates that AI-assisted image interpretation significantly enhances the diagnostic accuracy of clinicians in detecting PTX, particularly benefiting less experienced practitioners. While overall interpretation time remained unchanged, the use of AI improved diagnostic confidence and sensitivity, especially among junior clinicians. These findings underscore the potential of AI to support less skilled clinicians in acute care settings.

2.
J Med Chem ; 54(21): 7523-34, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21967660

RESUMO

Cancer cell targeting peptides have emerged as a highly efficient approach for selective delivery of chemotherapeutics and diagnostics to different cancer cells. However, the use of α-peptides in pharmaceutical applications is hindered by their enzymatic degradation and low bioavailability. Starting with a 10-mer α-peptide 18 that we developed previously, here we report three novel analogues of 18 that are proteolytically stable and display better (up to 3.5-fold) affinity profiles for breast cancer cells compared to 18. The design strategy involved replacement of two or three amino acids in the sequence of 18 with d-residues or ß(3)-amino acids. Such replacement maintained the specificity for cancer cells (MDA-MB-435, MDA-MB-231, and MCF-7) with low affinity for control noncancerous cells (MCF-10A and HUVEC), showed an increase in secondary structure, and rendered the analogues completely stable to human serum and liver homogenate from mice. The three analogues are potentially safe with minimal cellular toxicity and are efficient targeting moieties for specific drug delivery to breast cancer cells. The strategy used here may be adapted to develop peptide analogues that will target other cancer cell types.


Assuntos
Antineoplásicos/síntese química , Oligopeptídeos/síntese química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Dicroísmo Circular , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Técnicas In Vitro , Fígado/metabolismo , Camundongos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ligação Proteica , Conformação Proteica , Proteólise , Soluções , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...